Elkot, M.; Sun, B.; Zhou, X.; Ponge, D.; Raabe, D.: Grain boundary κ-carbides in high manganese lightweight steel: degradation assessment and potential solutions. 5th International High Manganese Steel Conference 2022, online, Linz, Austria (2022)
Liu, C.; Roters, F.; Raabe, D.: Finite strain crystal plasticity-phase field modeling of deformation twinning and dislocation slip interaction in hexagonal materials. 18th European Mechanics of Materials Conference, online, Oxford, UK (2022)
Ma, Y.; Villanova, J.; Requena, G.; Raabe, D.: Understanding the physical-chemical phenomena in green steel production using synchrotron X-ray techniques. European Synchrotron Radiation Facility User Meeting 2022, Online (2022)
Liu, C.; Roters, F.; Raabe, D.: Finite strain crystal plasticity-phase field modeling of twin, dislocation, and grain boundary interactions. 19th International Conference on Strength of Materials ICSMA, Metz, France (2022)
Liu, C.; Shanthraj, P.; Davis, A.; Fellowes, J.; Prangnell, P.; Raabe, D.: Chemo-mechanical phase-field model for two-sublattice phases: phase precipitation in Al–Zn–Mg–Cu alloys. 19th International Conference on Strength of Materials ICSMA, Metz, France (2022)
Raabe, D.: The Science of dirty alloys: recycling-based Aluminium for a circular economyle. The 4th International Conference on Light Materials - Science and Technology, Opening Plenary Lecture (delivered online) (2021)
Morsdorf, L.; Mayweg, D.; Li, Y.; Diederichs, A.; Raabe, D.; Herbig, M.: Moving cracks and missing C atoms – chasing the mysteries of white etching areas in bearings. 2nd meeting of "Metallurgical Metallurgy for Plasticity-driven Damage and Fracture" research forum 2021 (ISIJ), virtual (2021)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project we developed a phase-field model capable of describing multi-component and multi-sublattice ordered phases, by directly incorporating the compound energy CALPHAD formalism based on chemical potentials. We investigated the complex compositional pathway for the formation of the η-phase in Al-Zn-Mg-Cu alloys during commercial…
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
The objective of the project is to investigate grain boundary precipitation in comparison to bulk precipitation in a model Al-Zn-Mg-Cu alloy during aging.