Neugebauer, J.: Solvent-controlled single atom dissolution, surface alloying and Wulff shapes of nanoclusters; Electrocatalysis at electrocodes in the dry. Workshop: Research Area III, ZEMOS, Bochum, Germany (2016)
Neugebauer, J.: Collective variable description of crystal anharmonicity. IPAM Workshop II: Collective Variables in Classical Mechanics, Los Angeles, CA, USA (2016)
Neugebauer, J.: Modelling structural materials in extreme environments by ab initio guided multiscale simulations. International Workshop “Theory and Modelling of Materials in Extreme Environment", Abingdon, UK (2016)
Neugebauer, J.: Ab initio thermodynamic description of advanced structural materials: Status and challenges. Workshop “Ab-initio Based Modeling of Advanced Materials”, Yekaterinburg, Russia (2016)
Neugebauer, J.: Stahl: Wie ein alter Werkstoff sich immer wieder neu erfindet und damit Wissenschaft und Wirtschaft beflügelt. 129. Versammlung der Gesellschaft der deutschen Naturforscher und Ärzte, Greifswald, Germany (2016)
Dutta, B.; Hickel, T.; Neugebauer, J.: Intermartensitic Phase Boundaries in Ni–Mn–Ga Alloys: A Viewpoint from Ab initio Thermodynamics. 5th International Conference on Ferromagnetic Shape Memory Alloys, Sendai, Japan (2016)
Zendegani, A.; Körmann, F.; Hickel, T.; Hallstedt, B.; Neugebauer, J.: Thermodynamic properties of the quaternary Q phase in Al–Cu–Mg–Si: a combined ab-initio, phonon and compound energy formalism approach. International Conference on Advanced Materials Modelling (ICAMM), Rennes, France (2016)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In order to develop more efficient catalysts for energy conversion, the relationship between the surface composition of MXene-based electrode materials and its behavior has to be understood in operando. Our group will demonstrate how APT combined with scanning photoemission electron microscopy can advance the understanding of complex relationships…
This project studies the mechanical properties and microstructural evolution of a transformation-induced plasticity (TRIP)-assisted interstitial high-entropy alloy (iHEA) with a nominal composition of Fe49.5Mn30Co10Cr10C0.5 (at. %) at cryogenic temperature (77 K). We aim to understand the hardening behavior of the iHEA at 77 K, and hence guide the future design of advanced HEA for cryogenic applications.
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization as in micropillar compression. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one.…