Grabke, H.-J.: Surface and interface reactions and diffusion during the high-temperature corrosion of metals and alloys. Defect and Diffusion Forum 194 - 199, pp. 1649 - 1660 (2001)
Müller-Lorenz, E. M.; Grabke, H.-J.: Metal dusting exposures of modified stainless steels. 5. Symp. on High Temperature Corrosion, pp. 955 - 962 (2001)
Piehl, C.; Tôkei, Z. S.; Grabke, H.-J.: Surface treatment and cold working as tools to improve oxidation behaviour of chromium steels. 5th Int. Symp. on High Temperature Corrosion, pp. 319 - 326 (2001)
Piehl, C.; Tôkei, Z. S.; Grabke, H.-J.: The role of fast diffusion paths in the selective oxidation of chromium steels. Defect and Diffusion Forum 194-199, pp. 1689 - 1694 (2001)
Sämann, N.; Spiegel, M.; Grabke, H.-J.: Influence of surface preparation on the corrosion of steels in simulated waste incineration environments. Materials Science Forum 369-372, pp. 963 - 970 (2001)
Grabke, H. J.; Müller-Lorenz, E. M.; Eltester, B.; Lucas, M.: Formation of chromium rich oxide scales for protection against metal dusting. Materials at High Temperatures 17 (2), pp. 339 - 345 (2000)
Grabke, H. J.; Müller-Lorenz, E. M.; Strauss, S.; Pippel, E.; Woltersdorf, J.: Effects of grain size, cold working, and surface finish on the metal-dusting resistance of steels. Oxidation of Metals 50 (3-4), pp. 241 - 254 (1998)
Grabke, H. J.; Müller-Lorenz, E. M.; Klöwer, J.; Agarwal, D. C.: Metal dusting of nickel-based alloys. Materials Performance 37 (7), pp. 58 - 63 (1998)
Grabke, H. J.; Müller-Lorenz, E. M.: Protection of high alloy steels against metal dusting by oxide scales. Materials and Corrosion-Werkstoffe und Korrosion 49 (5), pp. 317 - 320 (1998)
Schroer, C.; Spiegel, M.; Sauthoff, G.; Grabke, H.-J.: Fe–Cr–Si-alloys with enhanced resistance against high temperature corrosion in the presence of molten sulphate/chloride mixtures and HCl containing gases. Molten Salt Forum 5-6, pp. 441 - 446 (1998)
Biedenkopf, P.; Spiegel, M.; Grabke, H.-J.: High temperature corrosion of low and high alloy steels under molten carbonate fuel cell conditions. Materials and Corrosion-Werkstoffe und Korrosion 48 (8), pp. 477 - 488 (1997)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The atomic arrangements in extended planar defects in different types of Laves phases is studied by high-resolution scanning transmission electron microscopy. To understand the role of such defect phases for hydrogen storage, their interaction with hydrogen will be investigated.
In this project, we aim to synthetize novel ZrCu thin film metallic glasses (TFMGs) with controlled composition and nanostructure, investigating the relationship with the mechanical behavior and focusing on the nanometre scale deformation mechanisms. Moreover, we aim to study the mechanical properties of films with complex architectures such as…
Hydrogen embrittlement is one of the most substantial issues as we strive for a greener future by transitioning to a hydrogen-based economy. The mechanisms behind material degradation caused by hydrogen embrittlement are poorly understood owing to the elusive nature of hydrogen. Therefore, in the project "In situ Hydrogen Platform for…
Defects at interfaces strongly impact the properties and performance of functional materials. In functional nanostructures, they become particularly important due to the large surface to volume ratio.