Calderón, L. A. Á.; Shakeel, Y.; Gedsun, A.; Forti, M.; Hunke, S.; Han, Y.; Hammerschmidt, T.; Aversa, R.; Olbricht, J.; Chmielowski, M.et al.; Stotzka, R.; Bitzek, E.; Hickel, T.; Skrotzki, B.: Management of reference data in materials science and engineering exemplified for creep data of a singlecrystalline Nibased superalloy. Acta Materialia 286, 120735 (2025)
Atila, A.; Bitzek, E.: Atomistic origins of deformation-induced structural anisotropy in metaphosphate glasses and its influence on mechanical properties. Journal of Non-Crystalline Solids 627, 122822 (2024)
Webler, R.; Baranova, P. N.; Karewar, S.; Möller, J. J.; Neumeier, S.; Göken, M.; Bitzek, E.: On the influence of Al-concentration on the fracture toughness of NiAl: Microcantilever fracture tests and atomistic simulations. Acta Materialia 234, 117996 (2022)
Hiremath, P.; Melin, S.; Bitzek, E.; Olsson, P. A. T.: Effects of interatomic potential on fracture behaviour in single- and bicrystalline tungsten. Computational Materials Science 207 (18), 111283 (2022)
Gabel, S.; Merle, B.; Bitzek, E.; Göken, M.: A new method for microscale cyclic crack growth characterization from notched microcantilevers and application to single crystalline tungsten and a metallic glass. Journal of Materials Research 37, pp. 2061 - 2072 (2022)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of the work is to develop instrumentation, methodology and protocols to extract the dynamic strength and hardness of micro-/nano- scale materials at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1.
In this project, we investigate a high angle grain boundary in elemental copper on the atomic scale which shows an alternating pattern of two different grain boundary phases. This work provides unprecedented views into the intrinsic mechanisms of GB phase transitions in simple elemental metals and opens entirely novel possibilities to kinetically engineer interfacial properties.
Within this project, we will use an infra-red laser beam source based selective powder melting to fabricate copper alloy (CuCrZr) architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional CuCrZr alloy lattice architectures, under both quasi-static and dynamic loading…
Copper is widely used in micro- and nanoelectronics devices as interconnects and conductive layers due to good electric and mechanical properties. But especially the mechanical properties degrade significantly at elevated temperatures during operating conditions due to segregation of contamination elements to the grain boundaries where they cause…