Ramachandramoorthy, R.: High strain rate testing of copper based micropillars and microlattices. 206 Departmental Seminar Series, Empa, Thun, Switzerland (2021)
Ramachandramoorthy, R.: Pushing the limits of microscale manufacturing and mechanical testing. Department of Material Science and Engineering Seminar Series, Tel-Aviv University, online, Tel-Aviv, Israel (2021)
Ramachandramoorthy, R.: High strain rate testing from micro-to-meso scale. MRS Spring 2021 Conference - In Situ Mechanical Testing of Materials at Small Length Scales, Modeling and Data Analysis Symposium, online (2021)
Ramachandramoorthy, R.: High strain rate micromechanics: Instrumentation and implementation. DGM - Arbeitskreis Rasterkraftmikroskopie und nanomechanische Methoden, online (2020)
Bellón Lara, B.; Lu, W.; Fang, X.; Dehm, G.; Ramachandramoorthy, R.: Effect of Defects on the Dynamic Compression of Strontium Titanate Micropillars. ECI Nanomechanical Testing in Materials Research and Development IX, Sicily, Italy (2024)
Ding, K.; Kalácska, S.; Sharma, A.; Jain, M.; Koelmans, W.; Schürch, P.; Dehm, G.; Michler, J. K.; Ramachandramoorthy, R.: Copper micro-honeycomb architectures: fabrication, characterization and high strain rate testing. ECI Nanomechanical Testing in Materials Research and Development IX, Giardini Naxos, Messina (Sicily), Italy (2024)
Kang, S. G.; Gainov, R. R.; Heussen, D.; Bieler, S.; Sun, Z.; Weinberg, K.; Dehm, G.; Ramachandramoorthy, R.: Green laser powder bed fusion based fabrication and rate-dependent mechanical properties of copper lattices. arXiv (2022)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…
Grain boundaries are one of the most important constituents of a polycrystalline material and play a crucial role in dictating the properties of a bulk material in service or under processing conditions. Bulk properties of a material like fatigue strength, corrosion, liquid metal embrittlement, and others strongly depend on grain boundary…
Titanium and its alloys are widely used in critical applications due to their low density, high specific strength, and excellent corrosion resistance, but their poor plasticity at room temperature limits broader utilization. Introducing hydrogen as a temporary alloying element has been shown to improve plasticity during high-temperature processing…
This project targets to exploit or develop new methodologies to not only visualize the 3D morphology but also measure chemical distribution of as-synthesized nanostructures using atom probe tomography.