Grabowski, B.; Söderlind, P.; Hickel, T.; Neugebauer, J.: Ab Initio Thermodynamics of the fcc-bcc Transition in Ca Including All Relevant FiniteTemperature Excitation Mechanisms. TMS 2012, Orlando, FL, USA (2012)
Grabowski, B.: Ab initio prediction of materials properties up to the melting point. Condensed Matter and Materials Division seminar series, Lawrence Livermore National Lab, Livermore, CA, USA (2012)
Grabowski, B.: Ab initio prediction of materials properties up to the melting point. Seminar: "Ab initio Description of Iron and Steel: Thermodynamics and Kinetics", Tegernsee, Germany (2012)
Hickel, T.; Glensk, A.; Grabowski, B.; Neugebauer, J.: Ab initio up to the melting point: Integrated approach to derive accurate thermodynamic data for Al alloys. European Aluminium Association, European Aluminium Technology Platform, Working Group 5: Predictive Modelling, 5th workshop: ab initio modelling, Aachen, Germany (2011)
Grabowski, B.; Hickel, T.; Glensk, A.; Neugebauer, J.: Integrated approach to derive thermodynamic data for pure Al and Al alloys up to the melting point. Psi-k Conference 2010, Berlin, Germany (2010)
Glensk, A.; Grabowski, B.; Hickel, T.; Neugebauer, J.: Ab initio prediction of thermodynamic data for selected phases of the Al-Mg-Si-Cu system. CECAM Summer School on Computational Materials Sciences, San Sebastian, Spain (2010)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The project HyWay aims to promote the design of advanced materials that maintain outstanding mechanical properties while mitigating the impact of hydrogen by developing flexible, efficient tools for multiscale material modelling and characterization. These efficient material assessment suites integrate data-driven approaches, advanced…
The segregation of impurity elements to grain boundaries largely affects interfacial properties and is a key parameter in understanding grain boundary (GB) embrittlement. Furthermore, segregation mechanisms strongly depend on the underlying atomic structure of GBs and the type of alloying element. Here, we utilize aberration-corrected scanning…
This project studies the influence of grain boundary chemistry on mechanical behaviour using state-of-the-art micromechanical testing systems. For this purpose, we use Cu-Ag as a model system and compare the mechanical response/deformation behaviour of pure Cu bicrystals to that of Ag segregated Cu bicrystals.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…