Khan, T. R.; Vimalanandan, A.; Marlow, F.; Erbe, A.; Rohwerder, M.: Existence of a lower critical radius for incorporation of silica particles into zinc during electro-codeposition. ACS Applied Materials and Interfaces 4 (11), pp. 6221 - 6227 (2012)
Khan, T. R.; Erbe, A.; Auinger, M.; Marlow, F.; Rohwerder, M.: Electrodeposition of zinc-silica composite coatings: Challenges in incorporating functionalized silica particles into a zinc matrix. Science and Technology of Advanced Materials 12 (5), 055005 (2011)
Khan, T. R.; de la Fuenta, D.; Rohwerder, M.: Electrolytic co-deposition of SiO2 nanoparticles with zinc for improvement of corrosion protection. 59th Annual Meeting of the International Society of Electrochemistry, Seville, Spain (2008)
Khan, T. R.; Vimalanandan, A.; Rohwerder, M.; Marlow, F.: Electrodeposition of Zinc-Silica Coatings for Smart Corrosion Protection. EUROCORR 2011, the European Corrosion Congress “Developing Solutions For The Global Challenge”, Stockholm, Sweden (2011)
Khan, T. R.: Nanocomposite coating: Codeposition of SiO2 particles during electrogalvanizing. Dissertation, Fakultät für Maschinenbau der Ruhr-Universität Bochum, Bochum, Germany (2011)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Many important phenomena occurring in polycrystalline materials under large plastic strain, like microstructure, deformation localization and in-grain texture evolution can be predicted by high-resolution modeling of crystals. Unfortunately, the simulation mesh gets distorted during the deformation because of the heterogeneity of the plastic…
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
With the support of DFG, in this project the interaction of H with mechanical, chemical and electrochemical properties in ferritic Fe-based alloys is investigated by the means of in-situ nanoindentation, which can characterize the mechanical behavior of independent features within a material upon the simultaneous charge of H.
The full potential of energy materials can only be exploited if the interplay between mechanics and chemistry at the interfaces is well known. This leads to more sustainable and efficient energy solutions.