Klemm, S. O.; Karschin, A.; Mechler, A. K.; Topalov, A. A.; Katsounaros, I.; Mayrhofer, K. J. J.: Corrigendum to “Time and potential resolved dissolution analysis of rhodium using a microelectrochemical flow cell coupled to an ICP-MS” [Journal of Electroanalytical Chemistry 677–680 (2012) 50–55] (S1572665712001865) (10.1016/j.jelechem.2012.05.006)). Journal of Electroanalytical Chemistry 693, p. 127 (2013)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
Within this project we investigate chemical fluctuations at the nanometre scale in polycrystalline Cu(In,Ga)Se2 and CuInS2 thin-flims used as absorber material in solar cells.
This project aims to develop a testing methodology for the nano-scale samples inside an SEM using a high-speed nanomechanical low-load sensor (nano-Newton load resolution) and high-speed dark-field differential phase contrast imaging-based scanning transmission electron microscopy (STEM) sensor.
The thorough, mechanism-based, quantitative understanding of dislocation-grain boundary interactions is a central aim of the Nano- and Micromechanics group of the MPIE [1-8]. For this purpose, we isolate a single defined grain boundary in micron-sized sample. Subsequently, we measure and compare the uniaxial compression properties with respect to…