Neugebauer, J.: Ab Initio Based Modeling of Engineering Materials: From a Predictive Thermodynamic Description to Tailored Mechanical Properties. Materials Science and Engineering, Nürnberg, Germany (2008)
von Pezold, J.; Neugebauer, J.: Hydrogen-enhanced local plasticity - An atomistic study. Materials Science and Engineering 2008, Nuernberg, Germany (2008)
Ismer, L.; Ireta, J.; Neugebauer, J.: First principles study of vibrational and thermodynamic properties of the secondary structure of proteins. Computational Materials Science Workshop, Ebernburg Castle, Germany (2008)
Körmann, F.; Dick, A.; Grabowski, B.; Hickel, T.; Neugebauer, J.: The free energy of bcc iron: Integrated ab initio derivation of vibrational, electronic, and magnetic contributions. Computational Materials Science Workshop, Ebernburg Castle, Germany (2008)
Marquardt, O.; Hickel, T.; Neugebauer, J.: Effect of strain and polarization on the electronic properties of 2-, 1- and 0-dimensional semiconductor nanostructures. Computational Materials Science Workshop, Ebernburg Castle, Germany (2008)
Todorova, M.; Neugebauer, J.: Towards an ab initio description of corrosion. Computational Materials Science Workshop, Ebernburg Castle, Germany (2008)
Udyansky, A.; von Pezold, J.; Friák, M.; Neugebauer, J.: Atomistic modeling of the strain-induced interaction between carbon atoms in Fe-C solid solution. Computational Materials Science Workshop, Ebernburg Castle, Germany (2008)
Uijttewaal, M.; Hickel, T.; Neugebauer, J.: Phase transformations of Ni2MnGa shape memory alloy from first principles: The (pre-)martensitic transition by phonons and magnons, Soft mode phase transformation by phonon couplings. Computational Materials Science Workshop, Ebernburg Castle, Germany (2008)
Friák, M.; Sander, B.; Ma, D.; Raabe, D.; Neugebauer, J.: Theory-guided Design of Ti-binaries for Biomedical Applications. 11th International Symposium on Physics of Materials (ISPMA-11), Prague, Czech Republic (2008)
Udyansky, A.; von Pezold, J.; Friák, M.; Neugebauer, J.: Atomistic modeling of the strain-induced interaction between carbon atoms in Fe-C solid solution. XVII International Materials Research Congress 2008, Cancun, Mexico (2008)
Grabowski, B.; Ismer, L.; Hickel, T.; Neugebauer, J.: Ab initio up to the melting point: An efficient thermodynamic integration scheme. Computational Materials Science Workshop, Ebernburg Castle, Germany (2008)
Hickel, T.; Uijttewaal, M.; Grabowski, B.; Neugebauer, J.: First principles determination of phase transitions in magnetic shape memory alloys. XXI Congress of the International Union of Crystallography, Osaka, Japan (2008)
Neugebauer, J.: Materials design based on ab initio thermodynamics and kinetics. XVII International Materials Research Congress 2008, Cancun, Mexico (2008)
Friák, M.; Sander, B.; Ma, D.; Counts, W. A.; Raabe, D.; Neugebauer, J.: Ab-initio based multi-scale approaches to the elasticity of polycrystals. Mid-term COST conference on Multiscale Modeling of Materials, COST action 19, Brno, Czech Republic (2008)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The goal of this project is the investigation of interplay between the atomic-scale chemistry and the strain rate in affecting the deformation response of Zr-based BMGs. Of special interest are the shear transformation zone nucleation in the elastic regime and the shear band propagation in the plastic regime of BMGs.
In this project we developed a phase-field model capable of describing multi-component and multi-sublattice ordered phases, by directly incorporating the compound energy CALPHAD formalism based on chemical potentials. We investigated the complex compositional pathway for the formation of the η-phase in Al-Zn-Mg-Cu alloys during commercial…
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.