Neugebauer, J.: Materials design and discovery on the computer: Prospects and challenges. Kolloquium Universität Braunschweig , Braunschweig, Germany (2015)
Körmann, F.; Grabowski, B.; Hickel, T.; Neugebauer, J.: Temperature-dependent coupling of atomic and magnetic degree of freedom from first-principles. Electronic Structure Theory for the Accelerated Design of Structural Materials, Moscow, Russia (2015)
Neugebauer, J.: Ab Initio Computation of Phonon-Phonon and Magnon-Phonon Interactions: Successes and Challenges. Workshop DyProSo, Freising, Germany (2015)
Neugebauer, J.: Design of structural materials by predictive ab initio thermodynamics: Challenges, applications and perspectives. Euromat Conference, Warsaw, Poland (2015)
Vatti, A. K.; Todorova, M.; Neugebauer, J.: Formation Energy of Halide ions (Cl/Br/I) in water from ab-initio Molecular Dyna. Psi-k 2015 Conference, San Sebastián, Spain (2015)
Neugebauer, J.: Quantum-mechanical approaches to address the structural and thermodynamic complexity of engineering materials. Swedish Chemical Society, Kalmar, Sweden (2015)
Neugebauer, J.: Understanding the fundamental mechanisms behind H embrittlement: An ab initio guided multiscale approach. Colloquium UCB Vancouver, Vancouver, Canada (2015)
Neugebauer, J.: Vacancies in fcc metals: Discovery of large non-Arrhenius effects. The 5th Sino-German Symposium Thermodynamics and Kinetics of Nano and Mesoscale Materials and Their Applications, Changchun, China (2015)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This ERC-funded project aims at developing an experimentally validated multiscale modelling framework for the prediction of fracture toughness of metals.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.
The unpredictable failure mechanism of White Etching Crack (WEC) formation in bearing steels urgently demands in-depth understanding of the underlying mechanisms in the microstructure. The first breakthrough was achieved by relating the formation of White Etching Areas (WEAs) to successive WEC movement.
The atomic arrangements in extended planar defects in different types of Laves phases is studied by high-resolution scanning transmission electron microscopy. To understand the role of such defect phases for hydrogen storage, their interaction with hydrogen will be investigated.