Wu, X.; Erbe, A.; Fabritius, H. O.; Raabe, D.: Ultrastructural Origins of Optical Properties in the Exoskeletons of Beetles. 2011 MRS Fall Meeting, Boston, MA, USA (2011)
Wu, X.; Erbe, A.; Fabritius, H.; Raabe, D.: Structure of the 3D-Photonic Crystals in the Multi-Colored Scales of the Weevil Entimus imperialis (Curculionidae). Ninth International Conference on Photonic and Electromagnetic Crystal Structures (PECS-IX 2010), Granada, Spain (2010)
Wu, X.; Erbe, A.; Fabritius, H.; Raabe, D.: Spectral and angular distribution of light scattered from the elytra of two carabid beetle species. First NanoCharm Workshop on Advanced Polarimetric Instrumentation, Ecole Polytechnique, Palaiseau Cedex, Palaiseau Cedex, France (2009)
Wu, X.: Structure-property-relations of cuticular photonic crystals evolved by different beetle groups (Insecta, Coleoptera). Dissertation, RWTH-Aachen, Aachen, Germany (2014)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project aims to investigate the dynamic hardness of B2-iron aluminides at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1 and study the microstructure evolution across strain rate range.
This project deals with the phase quantification by nanoindentation and electron back scattered diffraction (EBSD), as well as a detailed analysis of the micromechanical compression behaviour, to understand deformation processes within an industrial produced complex bainitic microstructure.
Within this project, we will use a green laser beam source based selective melting to fabricate full dense copper architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional copper lattice architectures, under both quasi-static and dynamic loading conditions.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.