Scheu, C.; Folger, A.: Annealing treatment in various atmospheres: A tool to control structure and properties of TiO2 nanowires. 6th International Symposium on Metastable, Amorphous and Nanostructured Materials (ISMANAM-2019), Chennai, India (2019)
Scheu, C.; Zhang, S.: Effect of interfaces on the photoelectrochemical performance of functional oxides. PICS3 2019 Meeting, Centre Interdisciplinaire de Nanoscience de Marseille, Marseille, France (2019)
Frank, A.; Dias, M.; Hieke, S. W.; Kruth, A.; Scheu, C.: Electron microscopic investigation of the influence of plasma parameters on VOx films deposited by a plasma ion assisted process. E-MRS 2019 Spring Meeting, Nice, France (2019)
Lim, J.; Hengge, K. A.; Aymerich Armengol, R.; Gänsler, T.; Scheu, C.: Structural Investigation of 2D Nanosheets and their Assembly to 3D Porous Morphologies. 5th International Conference on Electronic Materials and Nanotechnology for Green Environment (ENGE 2018), Jeju, Korea (2018)
Scheu, C.; Hengge, K. A.: Unraveling catalyst growth and degradation mechanisms via STEM. International Workshop on Advanced and In-situ Microscopies of Functional Nanomaterials and Devices, IAMNano 2018, Hamburg, Germany (2018)
Scheu, C.: Nanostructured photocatalyst based on transition metal oxides. Seminar at National University of Singapore, Dept. of Materials Science and Engineering, Singapore, Singapore (2018)
Scheu, C.: Insights in interfaces by combining Cs corrected STEM and APT experiments with atomistic simulations. Seminar at the University of Sydney, Faculty of Engineering & Information Technologies, Sydney, Australia (2018)
Scheu, C.: Unraveling the secrets of interfaces and grain boundaries. Seminar at University of New South Wales, School of Materials Science and Engineering, Sydney, Australia (2018)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this ongoing project, we investigate spinodal fluctuations at crystal defects such as grain boundaries and dislocations in Fe-Mn alloys using atom probe tomography, electron microscopy and thermodynamic modeling [1,2].
The aim of the Additive micromanufacturing (AMMicro) project is to fabricate advanced multimaterial/multiphase MEMS devices with superior impact-resistance and self-damage sensing mechanisms.
TiAl-based alloys currently mature into application. Sufficient strength at high temperatures and ductility at ambient temperatures are crucial issues for these novel light-weight materials. By generation of two-phase lamellar TiAl + Ti3Al microstructures, these issues can be successfully solved. Because oxidation resistance at high temperatures is…
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…