Palm, M.; Engberding, N.; Stein, F.; Kelm, K.; Irsen, S. H.: Formation of Phases, Phase Stability and Evolution of the Microstructure in Al-rich Ti–Al Alloys. MRS Fall Meeting 2010, Boston, MA, USA (2010)
Renner, F. U.; Vogel, D.; Vogel, A.; Palm, M.: Main Scale formation of Fe-Al based model alloys in steam. International Symposium on High-temperature Oxidation and Corrosion, Zushi, Japan (2010)
Voß, S.; Stein, F.; Palm, M.; Raabe, D.: Compositional Dependence of the Mechanical Properties of Laves Phases in the Fe–Nb(–Al) and Co–Nb(–Al) Systems. MRS Fall Meeting 2010, Boston, MA, USA (2010)
Voß, S.; Stein, F.; Palm, M.; Raabe, D.: Mechanical Properties of Laves Phases in the Systems Fe–Nb(–Al) and Co–Nb(–Al) using Polycrystalline, Single-Phase Material. Materiels Science and Engineering 2010 (MSE), Darmstadt, Germany (2010)
Hotař, A.; Palm, M.: Oxidation resistance of Fe–25Al–2Ta in synthetic air. 5th Discussion Meeting on the Development of Innovative Iron Aluminium Alloys (FEAL 2009), Prague, Czech Republic (2009)
Krein, R.; Palm, M.; Heilmaier, M.: Microstructure, Strength and Ductility of some Fe–Al–Ti–based Alloys. 5th Discussion Meeting on the Development of Innovative Iron Aluminium Alloys (FEAL 2009), Prague, Czech Republic (2009)
Friák, M.; Deges, J.; Krein, R.; Stein, F.; Palm, M.; Frommeyer, G.; Neugebauer, J.: Combining Experimental and Computational Methods in the Development of Fe3Al-based Materials. 5th Discussion Meeting on the Development of Innovative Iron Aluminium Alloys (FEAL 2009), Prague, Czech Republic (2009)
Hanus, P.; Palm, M.; Krein, R.; Bauer-Partenheimer, K.; Janschek, P.: High-temperature mechanical properties of forged steam turbine blade. 5th Discussion Meeting on the Development of Innovative Iron Aluminium Alloys (FEAL 2009), Prague, Czech Republic (2009)
Vogel, D.; Hotař, A.; Blum, C.; Palm, M.; Renner, F. U.: Corrosion behaviour of Fe–Al(–X) alloys in steam. 5th Discussion Meeting on the Development of Innovative Iron Aluminium Alloys (FEAL 2009), Prague, Czech Republic (2009)
Palm, M.: Recent Progress in the Development of Fe–Al-based Materials. THERMEC’ 2009 - International Conference on Processing & Manufacturing of Advanced Materials, Berlin, Germany (2009)
He, C.; Stein, F.; Palm, M.: Thermodynamic Assessment of the Nb–Co and Nb–Co–Al System. 2nd Sino-German Symposium on Computational Thermodynamics and Kinetics and Their Applications to Solidification, Kornelimünster, Aachen, Germany (2009)
Stein, F.; Prymak, O.; Dovbenko, O. I.; He, C.; Palm, M.; Schuster, J. C.: Investigation of Phase Diagrams of Laves Phase Containing Binary and Ternary Nb–TM(–Al) Systems with TM=Cr,Fe,Co. 2nd Sino-German Symposium on Computational Thermodynamics and Kinetics and Their Applications to Solidification, Kornelimünster, Aachen, Germany (2009)
Vogel, S. C.; Eumann, M.; Palm, M.; Stein, F.: Investigation of the crystallographic structure of the ε phase in the Fe–Al system by high-temperature neutron diffraction. TMS 2009 Annual Meeting, San Francisco, CA, USA (2009)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, we aim to design novel NiCoCr-based medium entropy alloys (MEAs) and further enhance their mechanical properties by tuning the multiscale heterogeneous composite structures. This is being achieved by alloying of varying elements in the NiCoCr matrix and appropriate thermal-mechanical processing.
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
The Ni- and Co-based γ/γ’ superalloys are famous for their excellent high-temperature mechanical properties that result from their fine-scaled coherent microstructure of L12-ordered precipitates (γ’ phase) in an fcc solid solution matrix (γ phase). The only binary Co-based system showing this special type of microstructure is the Co-Ti system…
In this project, we employ atomistic computer simulations to study grain boundaries. Primarily, molecular dynamics simulations are used to explore their energetics and mobility in Cu- and Al-based systems in close collaboration with experimental works in the GB-CORRELATE project.