Swaminathan, S.; Spiegel, M.; Rohwerder, M.: Effect of annealing conditions on the selective oxidation of quarternary model alloy. 4th International Conference on Diffusion in Solids and Liquids, Barcelona, Spain (2008)
Swaminathan, S.; Koll, T.; Pohl, M.; Spiegel, M.: Hot-dip galvanizing simulation of model alloys and industrial steel grades: Correlation between surface chemistry and wettability. GALVATECH `07, 7th International Conference on Zinc and Zinc Alloy Coated Steel Sheet, Osaka, Japan (2007)
Swaminathan, S.; Spiegel, M.: Effect of alloy composition on the selective oxidation of ternary Fe–Si–Cr, Fe–Mn–Cr model alloys. ECASIA 2007, 12th European Conference on Applications of Surface and Interface Analysis, Brussels-Flggey, Belgium (2007)
Auinger, M.; Swaminathan, S.; Rohwerder, M.: The Influence of Oxide Formation on the Diffusion Properties in Iron Alloys - The Thermogravimetric Behaviour in Early Stages of Oxidation. Gordon-Kenan Research Seminar on High Temperature Corrosion and Gordon-Research Conference on High Temperature Corrosion, New London, NH, USA (2011)
Vogel, D.; Swaminathan, S.; Rohwerder, M.; Renner, F. U.: Possibilities for high-temperature corrosion at MPIE. International Symposium on High-temperature Oxidation and Corrosion, Zushi, Japan (2010)
Vogel, A.; Swaminathan, S.; Vogel, D.; Rohwerder, M.: Novel Setup for Metal/Gas Reactions at High Temperature. 6th International Conference on Diffusion in Solids and Liquids: Mass Transfer, Heat Transfer and Microstructure and Properties, Paris, France (2010)
Swaminathan, S.: Selective surface oxidation and segregation upon short term annealing of model alloys and industrial steel grades. Dissertation, Ruhr-Universität, Fakultät für Physik und Astronomie, Bochum, Germany (2007)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
The Ni- and Co-based γ/γ’ superalloys are famous for their excellent high-temperature mechanical properties that result from their fine-scaled coherent microstructure of L12-ordered precipitates (γ’ phase) in an fcc solid solution matrix (γ phase). The only binary Co-based system showing this special type of microstructure is the Co-Ti system…
In this project, we employ atomistic computer simulations to study grain boundaries. Primarily, molecular dynamics simulations are used to explore their energetics and mobility in Cu- and Al-based systems in close collaboration with experimental works in the GB-CORRELATE project.
This project is a joint project of the De Magnete group and the Atom Probe Tomography group, and was initiated by MPIE’s participation in the CRC TR 270 HOMMAGE. We also benefit from additional collaborations with the “Machine-learning based data extraction from APT” project and the Defect Chemistry and Spectroscopy group.