Surendralal, S.; Todorova, M.; Neugebauer, J.: Laterally Resolved Free Energy Profiles and Vibrational Spectra of Chemisorbed H Atoms on Pt(111). Journal of Chemical Theory and Computation 20 (5), pp. 2192 - 2201 (2024)
Surendralal, S.; Todorova, M.; Neugebauer, J.: Impact of Water Coadsorption on the Electrode Potential of H–Pt(1 1 1)-Liquid Water Interfaces. Physical Review Letters 126 (16), 166802 (2021)
Surendralal, S.; Todorova, M.; Finnis, M. W.; Neugebauer, J.: First-Principles Approach to Model Electrochemical Reactions: Understanding the Fundamental Mechanisms behind Mg Corrosion. Physical Review Letters 120 (24), 246801 (2018)
Todorova, M.; Surendralal, S.; Deißenbeck, F.; Wippermann, S. M.; Neugebauer, J.: Atomic insights into fundamental processes at electrochemical solid/liquid interface by ab initio calculations. 38th Topical Meeting of the International Society of Electrochemistry: Nanomaterials in Electrochemistry, Manchester, UK (2024)
Todorova, M.; Surendralal, S.; Deißenbeck, F.; Wippermann, S. M.; Neugebauer, J.: Ab Initio Calculations for electrified solid/liquid interfaces – Challenges, insights and Opportunities. GRC Aqueous Corrosion: Corrosion Challenges and Opportunities for the Energy Transition, New London, NH, USA (2024)
Todorova, M.; Surendralal, S.; Yang, J.; Neugebauer, J.: Using ab initio calculations to unravel atomistic processes at electrified solid/ liquid interfaces. 63rd Sanibel Symposium, St. Augustine, FL, USA (2024)
Todorova, M.; Surendralal, S.; Deißenbeck, F.; Wippermann, S. M.; Neugebauer, J.: Insights into Electrified Solid/Liquid Interfaces from Ab initio and Atomistic Molecular Dynamics Simulations. CECAM - Young Researchers' School on Theory and Simulation in Electrochemical Conversion Processes, Paris, France (2023)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, we employ atomistic computer simulations to study grain boundaries. Primarily, molecular dynamics simulations are used to explore their energetics and mobility in Cu- and Al-based systems in close collaboration with experimental works in the GB-CORRELATE project.
This project is a joint project of the De Magnete group and the Atom Probe Tomography group, and was initiated by MPIE’s participation in the CRC TR 270 HOMMAGE. We also benefit from additional collaborations with the “Machine-learning based data extraction from APT” project and the Defect Chemistry and Spectroscopy group.
In this project, we aim to design novel NiCoCr-based medium entropy alloys (MEAs) and further enhance their mechanical properties by tuning the multiscale heterogeneous composite structures. This is being achieved by alloying of varying elements in the NiCoCr matrix and appropriate thermal-mechanical processing.