Ostwald, C.; Grabke, H. J.: Initial Oxidation and Chromium Diffusion. I. Effects of Surface Working on 9-20% Cr Steels. Corrosion Science 46 (5), pp. 1113 - 1127 (2004)
Grabke, H. J.; Spiegel, M.; Zahs, A.: Role of Alloying Elements and Carbides in the Chlorine-induced Corrosion of Steels and Alloys. Materials Research 7 (1), pp. 89 - 95 (2004)
Grabke, H.-J.; Tôkei, Z. S.; Ostwald, C.: Initial Oxidation of a 9 % CrMo- and a 12 % CrMoV – Steel. Steel Research International 75 (1), pp. 38 - 46 (2004)
Grabke, H. J.; Müller-Lorenz, E. M.; Zinke, M.: Metal Dusting Behaviour of Welded Ni-Base Alloys with Different Surface Finish. Material and Corrosion 54, pp. 785 - 792 (2003)
Pippel, E.; Woltersdorf, J.; Grabke, H. J.: Microprocesses of Metal Dusting on Iron - Nickel Alloys and their Dependence on Composition. Material and Corrosion 54 (10), pp. 747 - 751 (2003)
Spiegel, M.; Zahs, A.; Grabke, H. J.: Fundamental aspects of chlorine induced corrosion in power plants. Materials at High Temperatures 20, 2, pp. 153 - 159 (2003)
Moszynski, D.; Grabke, H. J.; Schneider, A.: Effect of sulphur on the formation of graphite at the surface of carburized iron. Surface and Interface Analysis 34, pp. 380 - 383 (2002)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The project HyWay aims to promote the design of advanced materials that maintain outstanding mechanical properties while mitigating the impact of hydrogen by developing flexible, efficient tools for multiscale material modelling and characterization. These efficient material assessment suites integrate data-driven approaches, advanced…
The segregation of impurity elements to grain boundaries largely affects interfacial properties and is a key parameter in understanding grain boundary (GB) embrittlement. Furthermore, segregation mechanisms strongly depend on the underlying atomic structure of GBs and the type of alloying element. Here, we utilize aberration-corrected scanning…
This project studies the influence of grain boundary chemistry on mechanical behaviour using state-of-the-art micromechanical testing systems. For this purpose, we use Cu-Ag as a model system and compare the mechanical response/deformation behaviour of pure Cu bicrystals to that of Ag segregated Cu bicrystals.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…