Dehm, G.: Fracture testing of thin films: insights from synchrotron XRD and micro-cantilever experiments. 2016 MRS Fall Meeting, Boston, MA, USA (2016)
Dehm, G.; Harzer, T. P.; Dennenwaldt, T.; Freysoldt, C.; Liebscher, C.: Chemical demixing and thermal stability of supersaturated nanocrystalline CuCr alloys: Insights from advanced TEM. MS&T '16, Materials Science & Technology 2016 Conference & Exhibition, Salt Lake City, UT, USA (2016)
Dehm, G.: Resolving the interplay of nanostructure and mechanical properties by advanced electron microscopy. MSE Conference, Materials Science and Engineering, Darmstadt, Germany (2016)
Kirchlechner, C.; Malyar, N.; Dehm, G.: Insights into dislocation grain-boundary interaction by X-ray µLaue diffraction. Dislocations 2016, West Lafayette, IN, USA (2016)
Dehm, G.: Deformation and Adhesion of Metallic Thin Films. International Conference on Metallurgical Coatings and Thin Films, 43rd ICMCTF, San Diego, CA, USA (2016)
Kirchlechner, C.; Malyar, N.; Imrich, P. J.; Dehm, G.: Dislocation twin boundary interaction and its dependence on loading direction. 62. Metallkunde-Kolloquium, Lech am Arlberg, Austria (2016)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…
In this project, we aim to achieve an atomic scale understanding about the structure and phase transformation process in the dual-phase high-entropy alloys (HEAs) with transformation induced plasticity (TRIP) effect. Aberration-corrected scanning transmission electron microscopy (TEM) techniques are being applied ...
This project with the acronym GB-CORRELATE is supported by an Advanced Grant for Gerhard Dehm by the European Research Council (ERC) and started in August 2018. The project GB-CORRELATE explores the presence and consequences of grain boundary phase transitions (often termed “complexions” in literature) in pure and alloyed Cu and Al. If grain size…
Hydrogen embrittlement remains a strong obstacle to the durability of high-strength structural materials, compromising their performance and longevity in critical engineering applications. Of particular relevance is the effect of mobile and trapped hydrogen at interfaces, such as grain and phase boundaries, since they often determine the material’s…