Rehman, U.; Tian, C.; Stein, F.; Best, J. P.; Dehm, G.: Fracture Toughness of the Intermetallic C15 Al2Ca Laves Phase Determined using a Micropillar Splitting Technique. Intermetallics 2021, Educational Center Kloster Banz, Bad Staffelstein, Germany (2021)
Rashkova, B.; Mendez Martin, F.; Brabetz, M.; Distl, B.; Hauschildt, K.; Stein, F.; Clemens, H.: Phase Constitution in an Intermetallic Ti-37Al-10Nb Alloy: What We Can Learn about the Phase Equilibria? MC2021, Microscopy conference 2021, ePoster, online (2021)
Yamaguchi, M.; Horiuchi, T.; Ikeda, K.-I.; Miura, S.; Stein, F.: Evaluation of Hardness before and after Compression Test of Nb2Co7 Single-phase Alloy by Nanoindentation Test. JIM (Japanese Institute of Metals) Meeting, ePoster, online (2021)
Distl, B.; Palm, M.; Stein, F.; Rackel, M. W.; Hauschildt, K.; Pyczak, F.: Phase equilibria investigations in the ternary Ti–Al–Nb system at elevated temperatures. Intermetallics 2019, Bad Staffelstein, Germany (2019)
Kahrobaee, Z.; Stein, F.; Palm, M.: Experimental evaluation of the isothermal section of the Ti–Al–Zr ternary system at 1273 K. Intermetallics 2019, Bad Staffelstein, Germany (2019)
Merali, M.; Stein, F.: Phase Relations in the Co-rich Part of the Co–Ti System including the Coexisting C36 and C15 Laves Phases. International Workshop on Laves Phases, Düsseldorf, Germany (2019)
Yamada, K.; Horiuchi, T.; Stein, F.; Miura, S.: Effect of Metastable L12-Co3Nb on Precipitation of Intermetallic Phases from Nb-Supersaturated Co Solid Solution in Co-rich Co-Nb Binary Alloys. 6th Int. Indentation Workshop, IIW6, Sapporo, Japan (2018)
Luo, W.; Kirchlechner, C.; Dehm, G.; Stein, F.: Composition dependence of mechanical properties of cubic and hexagonal NbCo2 Laves phases. EMMC 16, European Mechanics of Material Conference, Nantes, France (2018)
Luo, W.; Kirchlechner, C.; Dehm, G.; Stein, F.: Micropillar Compression of Hexagonal and Cubic NbCo2 Laves Phases. Nanomechanical Testing in Materials Research and Development VI, Dubrovnik, Croatia (2017)
Luo, W.; Kirchlechner, C.; Dehm, G.; Stein, F.: Deformation of Micropillars of Cubic and Hexagonal NbCo2 Laves Phases under Uniaxial Compression at Room Temperature. Intermetallics 2017, Educational Center Kloster Banz, Bad Staffelstein, Germany (2017)
Abe , K.; Horiuchi, T.; Stein, F.; Taniguchi, S.: Interrelation between Crystal Structure of Co Solid Solution Matrix and Precipitation of Intermetallic Phases in Co-rich Co–Nb Alloys. Calphad XLV, Awaji Island, Hyogo, Japan (2016)
Li, X.; Bottler, F.; Spatschek, R. P.; Scherf, A.; Heilmaier, M.; Stein, F.: Novel Lamellar in situ Composite Materials in the Al-Rich Part of the Fe-Al System. Int. Conf. The Materials Chain: From Discovery to Production, University Bochum, Bochum, Germany (2016)
Luo, W.; Kirchlechner, C.; Dehm, G.; Stein, F.: A New Method to Study the Composition Dependence of Mechanical Properties of Intermetallic Phases. Int. Conf. The Materials Chain: From Discovery to Production, University Bochum, Bochum, Germany (2016)
Horiuchi, T.; Stein, F.: Precipitation Behavior of Co7Nb2 from Supersaturated Co Solid Solution in Co–Nb Binary System. Intermetallics 2015, Educational Center Kloster Banz, Bad Staffelstein, Germany (2015)
Luo, W.; Kirchlechner, C.; Dehm, G.; Stein, F.: A New Method to Study the Composition Dependence of Mechanical Properties of Laves Phases. Intermetallics 2015, Educational Center Kloster Banz, Bad Staffelstein, Germany (2015)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project aims to develop a micromechanical metrology technique based on thin film deposition and dewetting to rapidly assess the dynamic thermomechanical behavior of multicomponent alloys. This technique can guide the alloy design process faster than the traditional approach of fabrication of small-scale test samples using FIB milling and…
Understanding hydrogen-microstructure interactions in metallic alloys and composites is a key issue in the development of low-carbon-emission energy by e.g. fuel cells, or the prevention of detrimental phenomena such as hydrogen embrittlement. We develop and test infrastructure, through in-situ nanoindentation and related techniques, to study…
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
In this project, we aim to realize an optimal balance among the strength, ductility and soft magnetic properties in soft-magnetic high-entropy alloys. To this end, we introduce a high-volume fraction of coherent and ordered nanoprecipitates into the high-entropy alloy matrix. The good combination of strength and ductility derives from massive solid…