Liu, T.; Raabe, D.; Mao, W.-M.: A review of crystallographic textures in chemical vapor-deposited diamond films. Frontiers of Materials Science in China 4 (1), pp. 1 - 16 (2010)
Liu, T.; Raabe, D.; Zaefferer, S.: A 3D tomographic EBSD analysis of a CVD diamond thin film. Science and Technology of Advanced Materials 9, 035013 (2008)
Cojocaru-Mirédin, O.; Choi, P.; Abou-Ras, D.; Wuerz, R.; Liu, T.; Schmidt, S. S.; Caballero, R.; Raabe, D.: Characterization of internal interfaces in Cu(In,Ga)Se2 thin-film solar cells using Atom Probe Tomography. Euromat 2011, Montpellier, France (2011)
Cojocaru-Mirédin, O.; Choi, P.; Wuerz, R.; Liu, T.; Raabe, D.: Characterization of CuInSe2 and Cu(In,Ga)Se2 thin-film solar cells using Atom Probe Tomography. Zentrum für Sonnenenergie und Wasserstoffforschung (ZSW), Stuttgart, Germany (2010)
Liu, T.; Raabe, D.; Mao, W.: Microtexture Evolution in Free-standing CVD Diamond Films: Growth and Twinning Mechanisms. 15 th International Conference on the Texture of Materials (ICOTOM 15), Carnegie Mellon University Center in Pittsburgh, PA, USA (2008)
Liu, T.; Raabe, D.; Zaefferer, S.; Mao, W.: On the Role of Nucleation during Microtexture Evolution in CVD Deposition of Diamond Thin Films. 15th International Conference on the Textures of Materials (ICOTOM 15), Carnegie Mellon University Center, Pittsburgh, PA, USA (2008)
Liu, T.; Raabe, D.; Zaefferer, S.; Mao, W.: 3D EBSD Texture Study on CVD Diamond Films. 15th International Conference on the Texture of Materials (ICOTOM 15), Pittsburgh, PA, USA (2008)
Liu, T.; Zaefferer, S.; Raabe, D.: On the Role of Nucleation during Microtexture Evolution in CVD Deposition of Diamond Thin Films. 15 th International Conference on the Textures of Materials (ICOTOM 15), Carnegie Mellon University Center, Pittsburgh, PA, USA (2008)
Liu, T.: High Resolution Investigation of Texture Formation Process in Diamond Films and the Related Macro-Stresses. Dissertation, Ruhr-University Bochum, Bochum [Germany] (2009)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The goal of this project is the investigation of interplay between the atomic-scale chemistry and the strain rate in affecting the deformation response of Zr-based BMGs. Of special interest are the shear transformation zone nucleation in the elastic regime and the shear band propagation in the plastic regime of BMGs.
In this project we developed a phase-field model capable of describing multi-component and multi-sublattice ordered phases, by directly incorporating the compound energy CALPHAD formalism based on chemical potentials. We investigated the complex compositional pathway for the formation of the η-phase in Al-Zn-Mg-Cu alloys during commercial…
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.