Cha, S. C.; Spiegel, M.: Fundamental studies on alkali chloride induced corrosion during combustion of biomass. Materials Science Forum 461–464, p. 1055 - 1055 (2004)
Cha, S. C.; Spiegel, M.: Studies on the local reactions of thermophoretic deposited alkali chloride particles on metal surfaces. In: NACE CORROSION‘ 04, 04533. NACE CORROSION‘ 04, New Orleans, LA, USA. (2004)
Cha, S. C.; Spiegel, M.: Local reaction between NaCl and KCl particles and metal surfaces. In: Proceedings of EUROCORR '04, 1. Proceedings of EUROCORR '04, Nice, France, 2004. (2004)
Cha, S. C.; Spiegel, M.: Studies on the local reactions of thermophoretic deposited alkali chloride particles on iron surfaces. NACE CORROSION‘ 04, New Orleans, LA, USA (2004)
Cha, S. C.; Spiegel, M.: Local reactions of KCl particles with Fe, Ni and Cr surfaces. EFC Workshop: Novel approaches to the improvement of high temperature corrosion resistance, DECHEMA, Frankfurt, Germany (2004)
Cha, S. C.; Spiegel, M.: Fundamental studies on alkali chloride induced corrosion during combustion of biomass. 6th Int. Symposium on High temperature Corrosion and Protection of Materials, Lez Embiez, France (2004)
Cha, S. C.; Vogel, D.; Spiegel, M.: Fundamental studies on alkali chloride induced corrosion during combustion of biomass. 18. Stahlkolloquium, Eurogress Aachen, Aachen, Germany (2003)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project we work on correlative atomic structural and compositional investigations on Co and CoNi-based superalloys as a part of SFB/Transregio 103 project “Superalloy Single Crystals”. The task is to image the boron segregation at grain boundaries in the Co-9Al-9W-0.005B alloy.
This project aims to investigate the dynamic hardness of B2-iron aluminides at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1 and study the microstructure evolution across strain rate range.
This project deals with the phase quantification by nanoindentation and electron back scattered diffraction (EBSD), as well as a detailed analysis of the micromechanical compression behaviour, to understand deformation processes within an industrial produced complex bainitic microstructure.