Diehl, M.; Eisenlohr, P.; Shanthraj, P.; Roters, F.: Using the Spectral Solver. 5th International Symposium on Computational Mechanics of Polycrystals, CMCn 2016 and first DAMASK User Meeting, Düsseldorf, Germany (2016)
Mianroodi, J. R.; Shanthraj, P.; Svendsen, B.: Strongly versus weakly non-local dislocation transport and pile-up. 24th International Congress of Theoretical and Applied Mechanics, Montreal, Canada (2016)
Mianroodi, J. R.; Shanthraj, P.; Svendsen, B.: Comparison of algorithms and solution methods for classic and phase-field-based periodic inhomogeneous elastostatics. ECCOMAS Congress 2016, Crete, Greece (2016)
Roters, F.; Diehl, M.; Shanthraj, P.: Crystal Plasticity Simulations - Fundamentals, Implementation, Application. Micromechanics of Materials, Zernike Institute for Advanced Materials, University of Groningen
, Groningen, The Netherlands (2016)
Roters, F.; Diehl, M.; Shanthraj, P.: DAMASK Evolving From a Crystal Plasticity Subroutine Towards a Multi-Physics Simulation Tool. Focus Group Meeting “Metals”, SPP 1713, Bad Herrenalb, Germany (2016)
Roters, F.; Zhang, C.; Eisenlohr, P.; Shanthraj, P.; Diehl, M.: On the usage of HDF5 in the DAMASK crystal plasticity toolkit. 2nd International Workshop on Software Solutions for Integrated Computational Materials Engineering - ICME 2016, Barcelona, Spain (2016)
Diehl, M.; Eisenlohr, P.; Roters, F.; Shanthraj, P.; Reuber, J. C.; Raabe, D.: DAMASK: The Düsseldorf Advanced Material Simulation Kit for studying crystal plasticity using an FE based or a spectral numerical solver. Seminar of the Centro Nacional de Investigaciones Metalúrgicas (CENIM) del CSIC , Madrid, Spain (2015)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project we work on correlative atomic structural and compositional investigations on Co and CoNi-based superalloys as a part of SFB/Transregio 103 project “Superalloy Single Crystals”. The task is to image the boron segregation at grain boundaries in the Co-9Al-9W-0.005B alloy.
This project aims to investigate the dynamic hardness of B2-iron aluminides at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1 and study the microstructure evolution across strain rate range.
This project deals with the phase quantification by nanoindentation and electron back scattered diffraction (EBSD), as well as a detailed analysis of the micromechanical compression behaviour, to understand deformation processes within an industrial produced complex bainitic microstructure.
Within this project, we will use a green laser beam source based selective melting to fabricate full dense copper architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional copper lattice architectures, under both quasi-static and dynamic loading conditions.