Qin, Y.; Mayweg, D.; Tung, P.-Y.; Pippan, R.; Herbig, M.: Mechanism of cementite decomposition in 100Cr6 bearing steels during high pressure torsion. MSE Congress 2020, virtual, Sankt Augustin, Germany (2020)
Mayweg, D.; Morsdorf, L.; Wu, X.; Herbig, M.: The role of carbon in the white etching crack phenomenon in bearing steels. MSE Congress 2020, virtual, Sankt Augustin, Germany (2020)
Herbig, M.: Joint Nanoscale Structural and Chemical Characterization by Correlative Atom Probe Tomography and Transmission Electron Microscopy. Joint Workshop on Nano-Characterisation (4TU.HTM / M2i), Utrecht, The Netherlands (2019)
Herbig, M.: Atomare Einsichten in Struktur und Zusammensetzung von Stählen durch korrelative Elektronenmikroskopie / Atomsondentomographie. 25. Werkstoffkolloquium des Technischen Beirats, Hannover, Germany (2017)
Herbig, M.; Parra, C.D.; Lu, W.; Toji, Y.; Liebscher, C.; Li, Y.; Goto, S.; Dehm, G.; Raabe, D.: Where does the carbon atom go in steel? – Insights gained by correlative transmission electron microscopy and atom probe tomography. International Symposium on Steel Science 2017, Kyoto, Japan (2017)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, we employ atomistic computer simulations to study grain boundaries. Primarily, molecular dynamics simulations are used to explore their energetics and mobility in Cu- and Al-based systems in close collaboration with experimental works in the GB-CORRELATE project.
This project is a joint project of the De Magnete group and the Atom Probe Tomography group, and was initiated by MPIE’s participation in the CRC TR 270 HOMMAGE. We also benefit from additional collaborations with the “Machine-learning based data extraction from APT” project and the Defect Chemistry and Spectroscopy group.
In this project, we aim to design novel NiCoCr-based medium entropy alloys (MEAs) and further enhance their mechanical properties by tuning the multiscale heterogeneous composite structures. This is being achieved by alloying of varying elements in the NiCoCr matrix and appropriate thermal-mechanical processing.