Wang, Z.: Investigation of crystallographic character and molten-salt-corrosion properties of grain boundaries in a stainless steel using EBSD and ab-initio calculations. Dissertation, Ruhr-Universität Bochum, Bochum, Germany (2017)
Elhami, N. N.: Influence of strain path changes during cup drawing on the twinning activity in TWIP steels investigated by ECCI. Dissertation, RWTH Aachen, Aachen, Germany (2017)
Stechmann, G.: A Study on the Microstructure Formation Mechanisms and Functional Properties of CdTe Thin Film Solar Cells Using Correlative Electron Microscopy and Atomistic Simulations. Dissertation, RWTH Aachen, Aachen, Germany (2017)
Ram, F.: The Kikuchi bandlet method for the intensity analysis of the Electron Backscatter Kikuchi Diffraction Patterns. Dissertation, RWTH Aachen, Aachen, Germany (2015)
Schemmann, L.: The inheritance of different microstructures found after hot rolling on the properties of a completely annealed dual phase steel. Dissertation, Fakultät für Georessourcen und Materialtechnik, RWTH Aachen, Aachen, Germany (2014)
Jäpel, T.: Feasibility study on local elastic strain measurements with an EBSD pattern cross correlation method in elastic-plastically deforming material. Dissertation, RWTH Aachen, Aachen, Germany (2014)
Elhami, N.-N.: Schädigungsmechanismen und Entwicklung der Mikrostruktur eines Al-legierten TRIP-Stahls im Laufe der Verformung. Diploma, RWTH Aachen, Aachen, Germany (2008)
Shan, Y.: Investigation on the Influence of Hydrogen on Dislocation Formation during Nanoindentation in TWIP Steels. Master, RWTH Aachen, Aachen, Germany (2018)
Kuo, J. C.; Zaefferer, S.; Raabe, D.: Experimental investigation of the deformation behavior of aluminium-bicrystals. MPI für Eisenforschung GmbH, Düsseldorf, Germany (2004)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
With the support of DFG, in this project the interaction of H with mechanical, chemical and electrochemical properties in ferritic Fe-based alloys is investigated by the means of in-situ nanoindentation, which can characterize the mechanical behavior of independent features within a material upon the simultaneous charge of H.
The full potential of energy materials can only be exploited if the interplay between mechanics and chemistry at the interfaces is well known. This leads to more sustainable and efficient energy solutions.
This project aims to correlate the localised electrical properties of ceramic materials and the defects present within their microstructure. A systematic approach has been developed to create crack-free deformation in oxides through nanoindentation, while the localised defects are probed in-situ SEM to study the electronic properties. A coupling…