Dehm, G.: Experimental Insights in Congruent and Non-Congruent Grain Boundary Phase Transformations in Copper by Advanced STEM. International Seminars, Technion - Israel Institute of Technology (Israel), Purdue University (USA), virtual (2021)
Dehm, G.: Congruent and non-congruent grain boundary phase transformations in Copper studied by advanced STEM. Virtual Seminar of Institute Jozef Stefan, Ljubljana, Slovenia (2021)
Liebscher, C.; Lu, W.; Dehm, G.; Raabe, D.; Li, Z.: Complex phase transformation pathways in high entropy alloys explored by in situ S/TEM. Third International Conference on High Entropy Materials, Berlin, Germany (2020)
Ahmad, S.; Liebscher, C.; Dehm, G.: To decipher the novel atomic structure of [111] tilt grain boundaries in Al. Material Science and Engineering Congress - MSE 2020, virtual, Darmstadt, Germany (2020)
Devulapalli, V.; Dehm, G.; Liebscher, C.: Unravelling grain boundary structures in Ti thin films using aberration-corrected transmission electron microscopy. MSE Darmdtadt (Virtual), Darmstadt, Germany (2020)
Saood, S.; Liebscher, C.; Dehm, G.: Observing the atomic structure of high angle [111] tilt grain boundaries in Al. Materials Science and Engineering Congress MSE 2020, virtual (2020)
Tsybenko, H.; Dehm, G.; Brinckmann, S.: Deformation and chemical evolution during tribology in cementite. Materials Science and Engineering Congress (MSE) 2020, online, Darmstadt, Germany (2020)
Hosseinabadi, R.; Dehm, G.; Kirchlechner, C.: Size effect in bi-crystalline Cu micropillars with a coherent twin boundary. DGM Arbeitskreistreffen Rasterkraftmikroskopie und nanomechanische Methoden, online (2020)
Duarte, M. J.; Fang, X.; Rao, J.; Dehm, G.: Hydrogen-microstructure interactions at small scale by in-situ nanoindentation during hydrogen charging. Nanobrücken 2020: A nanomechanical Testing Conference, Düsseldorf, Germany (2020)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Here the focus lies on investigating the temperature dependent deformation of material interfaces down to the individual microstructural length-scales, such as grain/phase boundaries or hetero-interfaces, to understand brittle-ductile transitions in deformation and the role of chemistry or crystallography on it.
This project (B06) is part of the SFB 1394 collaborative research centre (CRC), focused on structural and atomic complexity, defect phases and how they are related to material properties. The project started in January 2020 and has three important work packages: (i) fracture analysis of intermetallic phases, (ii) the relationship of fracture to…
Grain boundaries (GBs) affect many macroscopic properties of materials. In the case of metals grain growth, Hall–Petch hardening, diffusion, and electrical conductivity, for example, are influenced or caused by GBs. The goal of this project is to investigate the different GB phases (also called complexions) that can occur in tilt boundaries of fcc…
In order to develop more efficient catalysts for energy conversion, the relationship between the surface composition of MXene-based electrode materials and its behavior has to be understood in operando. Our group will demonstrate how APT combined with scanning photoemission electron microscopy can advance the understanding of complex relationships…