Stechmann, G.; Zaefferer, S.; Konijnenberg, P. J.: Microstructural and Electronic Characterization of CdTe Thin Film Solar Cells: A Correlative SEM-Based Approach. IAMNano, Port Elizabeth, South Africa (2016)
Stechmann, G.; Zaefferer, S.: Microstructural and Electronic Characterization of CdTe Thin Film Solar Cells: A Correlative SEM-Based Approach. IAMNano, Hamburg, Germany (2015)
Zaefferer, S.; Mandal, S.; Stechmann, G.; Bozzolo, N.: Correlative measurement of the 5-parameter grain boundary character and its physical and chemical properties. RMS EBSD 2014, London, UK (2014)
Stechmann, G.: A Study on the Microstructure Formation Mechanisms and Functional Properties of CdTe Thin Film Solar Cells Using Correlative Electron Microscopy and Atomistic Simulations. Dissertation, RWTH Aachen, Aachen, Germany (2017)
Stechmann, G.: Compatibility between Molten Salts and Materials in Concentrated Solar Power Plants. Diploma, École Nationale Supérieure de Chimie de Lille, Lille, France (2013)
Stechmann, G.: Crystallographic and Electronic Characterization of Grain Boundaries in Cd–Te Thin Film Solar Cell. Master, University of Lille I, University of Science and Technology, Lille, France (2013)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This ERC-funded project aims at developing an experimentally validated multiscale modelling framework for the prediction of fracture toughness of metals.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.
The unpredictable failure mechanism of White Etching Crack (WEC) formation in bearing steels urgently demands in-depth understanding of the underlying mechanisms in the microstructure. The first breakthrough was achieved by relating the formation of White Etching Areas (WEAs) to successive WEC movement.
The atomic arrangements in extended planar defects in different types of Laves phases is studied by high-resolution scanning transmission electron microscopy. To understand the role of such defect phases for hydrogen storage, their interaction with hydrogen will be investigated.