Benedikt, U.; Schneider, W.; Auer, A. A.: Oxygen Reduktion Reaction On Pt-Nanoparticles: A Density-Functional Based Study II. Electrochemistry 2010: From Microscopic Understanding to Global Impact, Ruhr-Universität Bochum, Bochum, Germany (2010)
Schneider, W.; Auer, A. A.; Mehring, M.: Interactions of Main Group Elements and Aromatic Systems - A Theoretical Study. STC 2010 - Quantum Chemistry for Large and Complex Systems: From Theory to Algorithms and Applications, Münster, Germany (2010)
Schneider, W.; Benedikt, U.; Auer, A. A.: Oxygen Reduktion Reaction on Pt-Nanoparticles: A Density-Functional Based Study I. Electrochemistry 2010: From Microscopic Understanding to Global Impact, Ruhr-Universität Bochum, Bochum, Germany (2010)
Auer, A. A.: Grundlagen von Elektronenstrukturrechnungen. Lecture: Kompaktkurs "Grundlagen von Elektronenstrukturrechnungen", Institut für Chemie, TU Chemnitz, Germany, April 12, 2010 - July 23, 2010
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this EU Horizon project, we at MPIE, will focus on the sustainable pre-reduction of manganese ores with hydrogen, especially the kinetic analysis of the reduction process using thermogravimetry analysis and an in-depth understand the role of microstructure and local chemistry in the reduction process.
The objective of the project is to investigate grain boundary precipitation in comparison to bulk precipitation in a model Al-Zn-Mg-Cu alloy during aging.
This project aims to develop a micromechanical metrology technique based on thin film deposition and dewetting to rapidly assess the dynamic thermomechanical behavior of multicomponent alloys. This technique can guide the alloy design process faster than the traditional approach of fabrication of small-scale test samples using FIB milling and…
Understanding hydrogen-microstructure interactions in metallic alloys and composites is a key issue in the development of low-carbon-emission energy by e.g. fuel cells, or the prevention of detrimental phenomena such as hydrogen embrittlement. We develop and test infrastructure, through in-situ nanoindentation and related techniques, to study…