Microstructure And Mechanical Properties Of Additively Manufactured Pearl® Micro AD730®. World PM 2022 Congress and Exhibition, Code 188680, Lyon, France, October 09, 2022 - October 13, 2022. (2022)
Lilensten, L.; Antonov, S.; Raabe, D.; Tin, S.; Gault, B.; Kontis, P.: Deformation of Borides in Nickel-based Superalloys: a Study of Segregation at Dislocations. M & M 2019 - Microscopy & Microanalysis, Portland, OR, USA, August 04, 2019 - August 08, 2019. Microscopy and Microanalysis 25, S2 Ed., pp. 2538 - 2539 (2019)
Antonov, S.: Understanding phase transformations at boundaries and interfaces in β-Titanium alloys at the near-atomic scale. Conference on Possibilities and Limitations of Quantitative Materials Modeling and Characterization, Bernkastel-Kues, Germany (2021)
Antonov, S.: Understanding the Defect-Solute Interactions during Deformation of Superalloys. Colloquium, Oak Ridge National Laboratory, online, Oak Ridge, TN, USA (2021)
Antonov, S.: Towards Improved Superalloy Performance via Defect Engineering. Department of Mechanical Colloquium, Industrial, and Manufacturing Engineering, Oregon State University, online, Corvallis, OR, USA (2021)
Antonov, S.; Shi, R.; Li, D.; Kloenne, Z.; Zheng, Y.; Fraser, H. L.; Raabe, D.; Gault, B.: Atom Probe Tomographic Study of Precursor Metastable Phases and Their Influence on a Precipitation in the Metastable ß-titanium Alloy, Ti–5Al–5Mo–5V–3Cr. TMS 2021 Annual Meeting & Exhibition, online, Pittsburgh, PA, USA (2021)
Antonov, S.: Understanding Superalloys on the Atomic Scale. Department of Materials Science Colloquium, University of Illinois Urbana-Champaign, online, Urbana, IL, USA (2021)
Antonov, S.: Overview of the Damage Accumulation Mechanisms During Non-isothermal Creep of Ni-based superalloys. Seminar, Exponent, online, Atlanta, GA, USA (2020)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this EU Horizon project, we at MPIE, will focus on the sustainable pre-reduction of manganese ores with hydrogen, especially the kinetic analysis of the reduction process using thermogravimetry analysis and an in-depth understand the role of microstructure and local chemistry in the reduction process.
The objective of the project is to investigate grain boundary precipitation in comparison to bulk precipitation in a model Al-Zn-Mg-Cu alloy during aging.
This project aims to develop a micromechanical metrology technique based on thin film deposition and dewetting to rapidly assess the dynamic thermomechanical behavior of multicomponent alloys. This technique can guide the alloy design process faster than the traditional approach of fabrication of small-scale test samples using FIB milling and…
Understanding hydrogen-microstructure interactions in metallic alloys and composites is a key issue in the development of low-carbon-emission energy by e.g. fuel cells, or the prevention of detrimental phenomena such as hydrogen embrittlement. We develop and test infrastructure, through in-situ nanoindentation and related techniques, to study…