Bueno Villoro, R.: Electron microscopy investigations to understand the transport properties of energy materials. Physics Department, Technical University of Denmark, Kongens Lyngby, Denmark (2023)
Bueno Villoro, R.: Effect of grain boundary phases on the properties of half Heusler thermoelectrics. Northwestern University, Evanston, IL, USA (2023)
Bueno Villoro, R.: Application of NbTiFeSb half Heusler thermoelectric materials. Colloquium, Leibniz-Institut für Festkörper- und Werkstoffforschung, Dresden, Germany (2022)
Mattlat, D. A.; Bueno Villoro, R.; Jung, C.; Scheu, C.; Zhang, S.; Naderloo, R. H.; Nielsch, K.; He, .; Zavanelli, D.; Snyder, G. J.: Effective doping of InSbat the grain boundaries in Nb1-xTixFeSb based Half-Heusler thermoelectricsfor high electrical conductivity and Seebeckcoefficient. 40th International & 20th European Conference on Thermoelectrics, Krakow, Poland (accepted)
Bueno Villoro, R.; Zavanelli, D.; Jung, C.; Mattlat, D. A.; Naderloo, R. H.; Pérez, N. A.; Nielsch, K.; Snyder, G. J.; Scheu, C.; He, R.et al.; Zhang, S.: Grain Boundary Phases in NbFeSb Half-Heusler Alloys: A New Avenue to Tune Transport Properties of Thermoelectric Materials. Microscopy of semiconducting materials conference, Cambridge, UK (2023)
Bueno Villoro, R.; Luo, T.; Bishara, H.; Abdellaoui, L.; Gault, B.; Wood, M.; Snyder, G. J.; Scheu, C.; Zhang, S.: Effect of grain boundaries on electrical conductivity in Ti(Co,Fe)Sb half Heusler thermoelectrics. 719. WE-Heraeus-Seminar, Understanding Transport Processes on the Nanoscale for Energy Harvesting Devices, online (2021)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project is a joint project of the De Magnete group and the Atom Probe Tomography group, and was initiated by MPIE’s participation in the CRC TR 270 HOMMAGE. We also benefit from additional collaborations with the “Machine-learning based data extraction from APT” project and the Defect Chemistry and Spectroscopy group.
In this project, we aim to design novel NiCoCr-based medium entropy alloys (MEAs) and further enhance their mechanical properties by tuning the multiscale heterogeneous composite structures. This is being achieved by alloying of varying elements in the NiCoCr matrix and appropriate thermal-mechanical processing.
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…