Malyar, N.; Dehm, G.; Kirchlechner, C.: Dislocation motion in bi-crystals with a specific grain boundary orientation studied by in situ SEM and in situ µLaue diffraction. Seminar: Thin Film & Small Scale Mechanical Behavior Gordon Research , Waltham, MA, USA (2014)
Philippi, B.; Kirchlechner, C.; Schießl, A.; Schingale, A.; Dehm, G.: Improving lead-free solders by resolving mechanical properties at the microstructure length scale. Thin Film & Small Scale Mechanical Behavior 2014, Gordon Research Conference, Waltham, MA, USA (2014)
Jaya, B. N.; Kirchlechner, C.; Dehm, G.: Fracture behavior of gradient PtNiAl bond coats at the micron-scale using in-situ microbeam bend studies. 13th European Nanomechanical User Group Meeting, Oxford, UK (2013)
Marx, V. M.; Kirchlechner, C.; Zizak, I.; Cordill, M. J.; Dehm, G.: Deformation behavior of thin Cu/Cr films on polyimide. Small Scale Plasticity School, Cargèse, Corsica, France (2013)
Marx, V. M.; Kirchlechner, C.; Zizak, I.; Cordill, M. J.; Dehm, G.: Adhesion behavior of Cu–Cr thin films on polyimide substrate. ECI Conference "Nano- and Micro-Mechanical Testing in Materials Research and Development IV", Olhão, Portugal (2013)
Marx, V. M.; Kirchlechner, C.; Zizak, I.; Cordill, M. J.; Dehm, G.: Adhesion Behavior of Cu–Cr Thin Films on Polyimide Substrate. TMS 2013: 142nd Annual Meeting & Exhibition, San Antonio, TX, USA (2013)
Marx, V. M.; Kirchlechner, C.; Zizak, I.; Dehm, G.; Cordill, M. J.: In-situ fracture study of thin Cu films on polyimide substrate. GDRi MECANO General Meeting 2012, Ecole de Mines, Paris, France (2012)
Hosseinabadi, R.: Dislocation transmission through coherent and incoherent twin boundaries in copper at the micron scale. Dissertation, Ruhr University Bochum (2024)
Jentner, R.: Phase identification and micromechanical characterization of an advanced high-strength low-alloy steel. Dissertation, Ruhr-Universität Bochum (2023)
Tian, C.: On the damage initiation in dual phase steels: Quantitative insights from in situ micromechanics. Dissertation, Ruhr-Universität Bochum (2021)
Li, J.: Probing dislocation nucleation in grains and at Ʃ3 twin boundaries of Cu alloys by nanoindentation. Dissertation, Ruhr-Universität Bochum (2020)
Kirchlechner, C.: Dislocation Slip Transfer Mechanism: Quantitative Insights from in situ Micromechanical Testing. Habilitation, Montanuniversität Leoben, Austria (2018)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Adding 30 to 50 at.% aluminum to iron results in single-phase alloys with an ordered bcc-based crystal structure, so-called B2-ordered FeAl. Within the extended composition range of this intermetallic phase, the mechanical behavior varies in a very particular way.
The mechanical properties of bulk CrFeCoNi compositionally complex alloys (CCA) or high entropy alloys (HEA) are widely studied in literature [1]. Notably, these alloys show mechanical properties similar to the well studied quinary CrMnFeCoNi [2] . Nevertheless, little is known about the deformation mechanisms and the thermal behavior of these…
In this project, the effects of scratch-induced deformation on the hydrogen embrittlement susceptibility in pearlite is investigated by in-situ nanoscratch test during hydrogen charging, and atomic scale characterization. This project aims at revealing the interaction mechanism between hydrogen and scratch-induced deformation in pearlite.
Efficient harvesting of sunlight and (photo-)electrochemical conversion into solar fuels is an emerging energy technology with enormous promise. Such emerging technologies depend critically on materials systems, in which the integration of dissimilar components and the internal interfaces that arise between them determine the functionality.