Jang, K.; Kim, M.-Y.; Jung, C.; Kim, S.-H.; Choi, D.; Park, S.-C.; Scheu, C.; Choi, P.-P.: Direct Observation of Trace Elements in Barium Titanate of Multilayer Ceramic Capacitors Using Atom Probe Tomography. Microscopy and Microanalysis 30 (6), pp. 1047 - 1056 (2024)
Yoo, B.; Jung, C.; Jang, K.; Jun, H.; Choi, P.-P.: Novel Ni-Co-based superalloys with high thermal stability and specific yield stress discovered by directed energy deposition. Materials and Design 238, 112607 (2024)
Park, H.; Jung, C.; Yi, S.; Choi, P.-P.: Elucidating the ball-milling-induced crystallization mechanism of amorphous NbCo1.1Sn via atomic-scale compositional analysis. Journal of Alloys and Compounds 968, 172014 (2023)
Jung, C.; Jeon, S.-j.; Lee, S.; Park, H.; Han, S.; Oh, J.; Yi, S.-H.; Choi, P.-P.: Reduced lattice thermal conductivity through tailoring of the crystallization behavior of NbCoSn by V addition. Journal of Alloys and Compounds 962, 171191 (2023)
Jung, C.; Zhang, S.; Cheng, N.; Scheu, C.; Yi, S.-H.; Choi, P.-P.: Effect of Heat Treatment Temperature on the Crystallization Behavior and Microstructural Evolution of Amorphous NbCo1.1Sn. ACS Applied Materials and Interfaces 15 (39), pp. 46064 - 46073 (2023)
Kim, H.; Bobel, A.; Jung, C.; Olson, G. B.; Euh, K.: Strengthening model development and effects of low diffusing solutes to coarsening resistance in aluminum alloys. Materials Today Communications 36, 106636 (2023)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, we aim to design novel NiCoCr-based medium entropy alloys (MEAs) and further enhance their mechanical properties by tuning the multiscale heterogeneous composite structures. This is being achieved by alloying of varying elements in the NiCoCr matrix and appropriate thermal-mechanical processing.
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
The Ni- and Co-based γ/γ’ superalloys are famous for their excellent high-temperature mechanical properties that result from their fine-scaled coherent microstructure of L12-ordered precipitates (γ’ phase) in an fcc solid solution matrix (γ phase). The only binary Co-based system showing this special type of microstructure is the Co-Ti system…
In this project, we employ atomistic computer simulations to study grain boundaries. Primarily, molecular dynamics simulations are used to explore their energetics and mobility in Cu- and Al-based systems in close collaboration with experimental works in the GB-CORRELATE project.