Philippi, B.; Kirchlechner, C.; Micha, J.-S.; Dehm, G.: Size and orientation dependent mechanical behavior of body-centered tetragonal Sn at 0.6 of the melting temperature. Acta Materialia 115, pp. 76 - 82 (2016)
Schüler, K.; Philippi, B.; Weinmann, M.; Marx, V. M.; Vehoff, H.: Effects of processing on texture, internal stresses and mechanical properties during the pulsed electrodeposition of nanocrystalline and ultrafine-grained nickel. Acta Materialia 61 (11), pp. 3945 - 3955 (2013)
Philippi, B.; Kirchlechner, C.; Schießl, A.; Schingale, A.; Dehm, G.: Improving lead-free solders by resolving mechanical properties at the microstructure length scale. Thin Film & Small Scale Mechanical Behavior 2014, Gordon Research Conference, Waltham, MA, USA (2014)
Philippi, B.; Schießl, A.; Schingale, A.; Dehm, G.: Micromechanical investigation of solder joints in automotive microelectronics. GDRi CNRS MECANO General Meeting on the Mechanics of Nano-Objects, MPIE, Düsseldorf, Germany (2013)
Philippi, B.; Schießl, A.; Schingale, A.; Dehm, G.: Micromechanical investigation of solder joints for automotive microelectronics. Nano- and Micromechanical Testing in Materials Research and Development IV, Olhão Algarve, Portugal (2013)
Philippi, B.: Micromechanical characterization of lead-free solder and its individual microstructure elements. Dissertation, Fakultät für Maschnenbau, RUB, Bochum, Germany (2016)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…