Pei, Z.; Yin, J.; Liaw, P. K.; Raabe, D.: Author Correction: Toward the design of ultrahigh-entropy alloys via mining six million texts. Nature Communications 14 (1), 3588 (2023)
Pei, Z.; Yin, J.; Liaw, P. K.; Raabe, D.: Toward the design of ultrahigh-entropy alloys via mining six million texts. Nature Communications 14, 54 (2023)
Pei, Z.; Zhang, S.; Lei, Y.; Zhang, F.; Chen, M.: Decoupling between Shockley partials and stacking faults strengthens multiprincipal element alloys. Proceedings of the National Academy of Sciences of the United States of America 118 (51), e2114167118 (2021)
Pei, Z.; Stocks, G. M.: Origin of the sensitivity in modeling the glide behaviour of dislocations. International Journal of Plasticity 106, pp. 48 - 56 (2018)
Sandlöbes, S.; Friák, M.; Dick, A.; Zaefferer, S.; Yi, S.; Letzig, D.; Pei, Z.; Zhu, L.-F.; Neugebauer, J.; Raabe, D.: Complementary TEM and ab ignition study on the ductilizing effect of Y in solid solution Mg–Y alloys. In: Proceedings of the 9th Intern. Conference on Magnesium alloys and their applications, pp. 467 - 472. 9th Intern. Conference on Magnesium alloys and their applications, Vancouver, Canada, July 08, 2012 - July 12, 2012. (2012)
Hickel, T.; Aydin, U.; Sözen, H. I.; Dutta, B.; Pei, Z.; Neugebauer, J.: Innovative concepts in materials design to boost renewable energies. Seminar of Institute for Innovative Technologies, SRH Berlin University of Applied Sciences, Berlin, Germany (2020)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.