Titrian, H.; Aydin, U.; Friák, M.; Ma, D.; Raabe, D.; Neugebauer, J.: Self-consistent scale-bridging approach to compute the elasticity of multi-phase polycrystalline materials. Materials Research Society Symposia Proceedings 1524, pp. 17 - 23 (2013)
Holec, D.; Friák, M.; Neugebauer, J.; Mayrhofer, P. H.: Trends in the elastic response of binary early transition metal nitrides. Physical Review B 85, pp. 064101-1 - 064101-9 (2012)
Holec, D.; Friák, M.; Dlouhy, A.; Neugebauer, J.: Ab initio study of pressure stabilized NiTi allotropes: Pressure-induced transformations and hysteresis loops. Physical Review B 84, pp. 224119-1 - 224119-8 (2011)
Zelený, M.; Friák, M.; Šob, M.: Ab initio study of energetics and magnetism of Fe, Co, and Ni along the trigonal deformation path. Physical Review B 83, pp. 184424-1 - 184424-7 (2011)
Counts, W. A.; Friák, M.; Raabe, D.; Neugebauer, J.: Using ab initio calculations in designing bcc MgLi–X alloys for ultra-lightweight applications. Advanced Engineering Materials 12 (12), pp. 1198 - 1205 (2010)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…