Grabowski, B.: Modern materials design from first-principles: Recent progress and future prospects. Seminar, Imperial College London, London, UK (2015)
Grabowski, B.: Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: Importance of entropy contributions beyond the configurational one. ICAMS Seminar, Ruhr-University Bochum, Bochum, Germany (2015)
Grabowski, B.: Random phase approximation up to the melting point: The impact of anharmonicity and non-local many-body effects on the thermodynamics of Au. MISIS Workshop, Moscow, Russia (2015)
Körmann, F.; Grabowski, B.; Hickel, T.; Neugebauer, J.: Temperature-dependent coupling of atomic and magnetic degree of freedom from first-principles. Electronic Structure Theory for the Accelerated Design of Structural Materials, Moscow, Russia (2015)
Grabowski, B.; Wippermann, S. M.; Glensk, A.; Hickel, T.; Neugebauer, J.: Random phase approximation up to the melting point: Impact of anharmonicity and nonlocal many-body effects on the thermodynamics of Au. DPG Spring Meeting 2015, Berlin, Germany (2015)
Hickel, T.; Glensk, A.; Grabowski, B.; Körmann, F.; Neugebauer, J.: Thermodynamics of materials up to the melting point: The role of anharmonicities. Asia Sweden Meeting on Understanding Functional Materials from Lattice dynamics, Guwahati, India (2014)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project aims to investigate the dynamic hardness of B2-iron aluminides at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1 and study the microstructure evolution across strain rate range.