Malyar, N.; Dehm, G.; Kirchlechner, C.: Strain rate dependence of the slip transfer through a penetrable high angle grain boundary in copper. Scripta Materialia 138, pp. 88 - 91 (2017)
Malyar, N.; Micha, J.-S.; Dehm, G.; Kirchlechner, C.: Dislocation-twin boundary interaction in small scale Cu bi-crystals loaded in different crystallographic directions. Acta Materialia 129, pp. 91 - 97 (2017)
Dehm, G.; Malyar, N.; Kirchlechner, C.: Towards probing the barrier strength of grain boundaries for dislocation transmission. Electronic Materials and Applications 2017, Orlando, FL, USA (2017)
Dehm, G.; Malyar, N.; Kirchlechner, C.: Do we understand dislocation transmission through grain boundaries? PICS meeting, Luminy, Marseille, France (2017)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.