Freysoldt, C.; Pfanner, G.; Neugebauer, J.: The Dangling-Bond Defect in Amorphous Silicon: Statistical Random Versus Kinetically Driven Defect Geometries. 24th International Conference on Amorphous and Nanocrystalline Semiconductors (ICANS 24), Nara, Japan (2011)
Fehr, M.; Schnegg, A.; Teutloff, C.; Bittl, R.; Astakhov, O.; Finger, F.; Pfanner, G.; Freysoldt, C.; Neugebauer, J.; Rech, B.et al.; Lips, K.: A Detailed Investigation of Native and Light-induced Defects in Hydrogenated Amorphous Silicon by Electron-spin Resonance. MRS Spring Meeting and Exhibit 2011, San Francisco, CA, USA (2011)
Pfanner, G.; Freysoldt, C.; Neugebauer, J.: EPR parameters of the dangling bond defect in crystalline and amorphous silion: A DFT-study. APS march meeting 2011, Dallas, TX, USA (2011)
Pfanner, G.; Freysoldt, C.; Neugebauer, J.: EPR parameters of the dangling bond defect in crystalline and amorphous silion: A DFT-study. DPG spring meeting 2011, Dresden, Germany (2011)
Freysoldt, C.: Fully ab initio finite-size corrections for electrostatic artifacts in charged-defect supercell calculations. Psi-k Conference 2010, Berlin, Germany (2010)
Freysoldt, C.; Neugebauer, J.; Van de Walle, C. G.: Charged defects in the supercell approach. Seminar at Duisburg University, Duisburg, Germany (2010)
Freysoldt, C.; Neugebauer, J.; Van de Walle, C. G.: Charged defects in the supercell approach. Seminar at Fritz-Haber-Institut der MPG, Berlin, Germany (2010)
Freysoldt, C.; Neugebauer, J.: Fully ab initio finite size corrections for charged defects in the supercell approach. APS march meeting, Portland, OR, USA (2010)
Mitra, C.; Freysoldt, C.; Neugebauer, J.: Band alignment in the framework of GW theory. Computational Materials Science on Complex Energy Landscapes Workshop, Imst, Austria (2010)
Pfanner, G.; Freysoldt, C.; Neugebauer, J.: Ab initio investigations of the silicon dangling bond. Computational Materials Science on Complex Energy Landscapes Workshop, Imst, Austria (2010)
Freysoldt, C.; Neugebauer, J.: Theory of defect distribution at semiconductor interfaces based on ab-initio thermodynamics. MRS Fall Meeting, Boston, MA, USA (2009)
Freysoldt, C.; Neugebauer, J.: Calculation of defect distribution at interfaces from ab-initio-based thermodynamic data. MRS Fall Meeting, Boston, MA, USA (2009)
Lange, B.; Freysoldt, C.; Neugebauer, J.: Highly p-doped GaN:Mg! What hinders the thermal drive-out of hydrogen? 2. Klausurtagung des Graduierten Kollegs: Mikro und Nanostrukturen in der Optoelektronik, Bad Karlshafen, Germany (2009)
Freysoldt, C.; Pfanner, G.; Neugebauer, J.: What can EPR hyperfine parameters tell about the Si dangling bond? - A theoretical study. International conference on amorphous and nanoporous semiconductors (ICANS) 23, Utrecht, Netherlands (2009)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Project A02 of the SFB1394 studies dislocations in crystallographic complex phases and investigates the effect of segregation on the structure and properties of defects in the Mg-Al-Ca System.
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
This project with the acronym GB-CORRELATE is supported by an Advanced Grant for Gerhard Dehm by the European Research Council (ERC) and started in August 2018. The project GB-CORRELATE explores the presence and consequences of grain boundary phase transitions (often termed “complexions” in literature) in pure and alloyed Cu and Al. If grain size…