Yamaguchi, M.; Horiuchi, T.; Ikeda, K.-I.; Miura, S.; Stein, F.: Evaluation of Hardness before and after Compression Test of Nb2Co7 Single-phase Alloy by Nanoindentation Test. JIM (Japanese Institute of Metals) Meeting, ePoster, online (2021)
Distl, B.; Palm, M.; Stein, F.; Rackel, M. W.; Hauschildt, K.; Pyczak, F.: Phase equilibria investigations in the ternary Ti–Al–Nb system at elevated temperatures. Intermetallics 2019, Bad Staffelstein, Germany (2019)
Kahrobaee, Z.; Stein, F.; Palm, M.: Experimental evaluation of the isothermal section of the Ti–Al–Zr ternary system at 1273 K. Intermetallics 2019, Bad Staffelstein, Germany (2019)
Merali, M.; Stein, F.: Phase Relations in the Co-rich Part of the Co–Ti System including the Coexisting C36 and C15 Laves Phases. International Workshop on Laves Phases, Düsseldorf, Germany (2019)
Yamada, K.; Horiuchi, T.; Stein, F.; Miura, S.: Effect of Metastable L12-Co3Nb on Precipitation of Intermetallic Phases from Nb-Supersaturated Co Solid Solution in Co-rich Co-Nb Binary Alloys. 6th Int. Indentation Workshop, IIW6, Sapporo, Japan (2018)
Luo, W.; Kirchlechner, C.; Dehm, G.; Stein, F.: Composition dependence of mechanical properties of cubic and hexagonal NbCo2 Laves phases. EMMC 16, European Mechanics of Material Conference, Nantes, France (2018)
Luo, W.; Kirchlechner, C.; Dehm, G.; Stein, F.: Micropillar Compression of Hexagonal and Cubic NbCo2 Laves Phases. Nanomechanical Testing in Materials Research and Development VI, Dubrovnik, Croatia (2017)
Luo, W.; Kirchlechner, C.; Dehm, G.; Stein, F.: Deformation of Micropillars of Cubic and Hexagonal NbCo2 Laves Phases under Uniaxial Compression at Room Temperature. Intermetallics 2017, Educational Center Kloster Banz, Bad Staffelstein, Germany (2017)
Abe , K.; Horiuchi, T.; Stein, F.; Taniguchi, S.: Interrelation between Crystal Structure of Co Solid Solution Matrix and Precipitation of Intermetallic Phases in Co-rich Co–Nb Alloys. Calphad XLV, Awaji Island, Hyogo, Japan (2016)
Li, X.; Bottler, F.; Spatschek, R. P.; Scherf, A.; Heilmaier, M.; Stein, F.: Novel Lamellar in situ Composite Materials in the Al-Rich Part of the Fe-Al System. Int. Conf. The Materials Chain: From Discovery to Production, University Bochum, Bochum, Germany (2016)
Luo, W.; Kirchlechner, C.; Dehm, G.; Stein, F.: A New Method to Study the Composition Dependence of Mechanical Properties of Intermetallic Phases. Int. Conf. The Materials Chain: From Discovery to Production, University Bochum, Bochum, Germany (2016)
Horiuchi, T.; Stein, F.: Precipitation Behavior of Co7Nb2 from Supersaturated Co Solid Solution in Co–Nb Binary System. Intermetallics 2015, Educational Center Kloster Banz, Bad Staffelstein, Germany (2015)
Luo, W.; Kirchlechner, C.; Dehm, G.; Stein, F.: A New Method to Study the Composition Dependence of Mechanical Properties of Laves Phases. Intermetallics 2015, Educational Center Kloster Banz, Bad Staffelstein, Germany (2015)
Stein, F.; Vogel, S. C.; Eumann, M.; Palm, M.: In-situ Neutron Diffraction Experiments on the Effect of Mo on the Structure of the High-Temperature ε Phase of the Fe–Al System. 5th Discussion Meeting on the Development of Innovative Iron Aluminium Alloys (FEAL 2009), Prague, Czech Republic (2009)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…
Grain boundaries are one of the most important constituents of a polycrystalline material and play a crucial role in dictating the properties of a bulk material in service or under processing conditions. Bulk properties of a material like fatigue strength, corrosion, liquid metal embrittlement, and others strongly depend on grain boundary…
Titanium and its alloys are widely used in critical applications due to their low density, high specific strength, and excellent corrosion resistance, but their poor plasticity at room temperature limits broader utilization. Introducing hydrogen as a temporary alloying element has been shown to improve plasticity during high-temperature processing…
This project targets to exploit or develop new methodologies to not only visualize the 3D morphology but also measure chemical distribution of as-synthesized nanostructures using atom probe tomography.