Hosseinabadi, R.; Riesch-Oppermann, H.; Best, J. P.; Dehm, G.; Kirchlechner, C.: Size-dependent coherent twin boundary strength contribution in Cu micropillars. Nanomechanical Testing in Materials Research and Development VIII, Split, Croatia (2022)
Hosseinabadi, R.; Riesch-Oppermann, H.; Best, J. P.; Dehm, G.; Kirchlechner, C.: Size effect in bi-crystalline Cu micropillars with a coherent twin boundary. ECI conference 2022, Nanomechanical Testing in Materials Research and Development VIII, Split, Croatia (2022)
Hosseinabadi, R.; Best, J. P.; Kirchlechner, C.; Dehm, G.: Impact of an incoherent twin boundary on the mechanical response of Cu bi-crystalline micropillars. 11th European Solid Mechanics Conference - ESMC 2022, Galway, Ireland (2022)
Hosseinabadi, R.; Dehm, G.; Kirchlechner, C.: Size effect in bi-crystalline Cu micropillars with a coherent twin boundary. DGM Arbeitskreistreffen Rasterkraftmikroskopie und nanomechanische Methoden, online (2020)
Hosseinabadi, R.: Dislocation transmission through coherent and incoherent twin boundaries in copper at the micron scale. Dissertation, Ruhr University Bochum (2024)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Project A02 of the SFB1394 studies dislocations in crystallographic complex phases and investigates the effect of segregation on the structure and properties of defects in the Mg-Al-Ca System.
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
This project with the acronym GB-CORRELATE is supported by an Advanced Grant for Gerhard Dehm by the European Research Council (ERC) and started in August 2018. The project GB-CORRELATE explores the presence and consequences of grain boundary phase transitions (often termed “complexions” in literature) in pure and alloyed Cu and Al. If grain size…