Ahmad, S.; Brink, T.; Liebscher, C.; Dehm, G.: Influence of variation in grain boundary parameters on the evolution of atomic structure and properties of [111] tilt boundaries in aluminum. Acta Materialia 268, 119732 (2024)
Brink, T.; Langenohl, L.; Ahmad, S.; Liebscher, C.; Dehm, G.: Atomistic Modeling of the Thermodynamics of Grain Boundaries in fcc Metals. 19th International Conference on Diffusion in Solids and Liquids, Crete, Greece (2023)
Ahmad, S.; Liebscher, C.; Dehm, G.: To decipher the novel atomic structure of [111] tilt grain boundaries in Al. Material Science and Engineering Congress - MSE 2020, virtual, Darmstadt, Germany (2020)
Saood, S.; Liebscher, C.; Dehm, G.: Observing the atomic structure of high angle [111] tilt grain boundaries in Al. Materials Science and Engineering Congress MSE 2020, virtual (2020)
Saood, S.; Brink, T.; Liebscher, C.; Dehm, G.: Atomic structure of [111] tilt boundaries of Al in relation to their crystallographic parameters. International Microscopy Conference 2023 (IMC-20), Busan, South Korea (2023)
Ahmad, S.; Liebscher, C.; Dehm, G.: Exploration of atomic structures in Σ3 [111] Al tilt grain boundaries. Sixth Conference on Frontiers of Aberration Corrected Electron Microscopy PICO 2021, virtual, Kasteel Vaalsbroek, The Netherlands (2021)
Ahmad, S.; Liebscher, C.; Dehm, G.: Strain-Induced phase transition in Σ3 [111] (211) tilt grain boundaries in Al. Microscopy conference Joint Meeting of Dreiländertagungn & Multinational Congress on Microscopy MC 2021, virtual, Vienna, Austria (2021)
Ahmad, S.; Meiners, T.; Frolov, T.; Liebscher, C.; Dehm, G.: Grain boundary structure and phase transitions in Cu and Al [111] tilt grain boundaries. International Workshop on Advanced and In-situ Microscopies of Functional Nanomaterials and Devices, IAMNano, Düsseldorf, Germany (2019)
Ahmad, S.: Fundamental investigation of the atomic structures of [111] tilt grain boundaries, their defects and segregation behaviour in pure and alloyed Al. Dissertation, Ruhr-Universität Bochum (2023)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
The Ni- and Co-based γ/γ’ superalloys are famous for their excellent high-temperature mechanical properties that result from their fine-scaled coherent microstructure of L12-ordered precipitates (γ’ phase) in an fcc solid solution matrix (γ phase). The only binary Co-based system showing this special type of microstructure is the Co-Ti system…
In this project, we employ atomistic computer simulations to study grain boundaries. Primarily, molecular dynamics simulations are used to explore their energetics and mobility in Cu- and Al-based systems in close collaboration with experimental works in the GB-CORRELATE project.
This project is a joint project of the De Magnete group and the Atom Probe Tomography group, and was initiated by MPIE’s participation in the CRC TR 270 HOMMAGE. We also benefit from additional collaborations with the “Machine-learning based data extraction from APT” project and the Defect Chemistry and Spectroscopy group.