Kumar, A.; Dutta, A.; Makineni, S. K.; Herbig, M.; Petrov, R.; Sietsma, J.: In-situ observation of strain partitioning and damage development in continuously cooled carbide-free bainitic steels using micro digital image correlation. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 757, pp. 107 - 116 (2019)
Dutta, A.; Ponge, D.; Sandlöbes, S.; Raabe, D.: Strain partitioning and strain localization in medium manganese steels measured by in situ microscopic digital image correlation. Materialia 5, 100252 (2019)
Dutta, A.; Ponge, D.; Sandlöbes, S.; Raabe, D.: Understanding hot vs. Cold rolled medium manganese steel deformation behavior using in situ microscopic digital image correlation. Materials Science Forum 941, pp. 198 - 205 (2018)
Haupt, M.; Dutta, A.; Ponge, D.; Sandlöbes, S.; Nellessen, M.; Hirt, G.: Influence of Intercritical Annealing on Microstructure and Mechanical Properties of a Medium Manganese Steel. International Conference on the Technology of Plasticity, ICTP 2017, Cambridge, UK, September 17, 2017 - September 22, 2017. Procedia Engineering 207, pp. 1803 - 1808 (2017)
Dutta, A.: Deformation behaviour and texture memory effect of multiphase nano-laminate medium manganese steels. Dissertation, RWTH Aachen University (2019)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of the work is to develop instrumentation, methodology and protocols to extract the dynamic strength and hardness of micro-/nano- scale materials at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1.
In this project, we investigate a high angle grain boundary in elemental copper on the atomic scale which shows an alternating pattern of two different grain boundary phases. This work provides unprecedented views into the intrinsic mechanisms of GB phase transitions in simple elemental metals and opens entirely novel possibilities to kinetically engineer interfacial properties.
Within this project, we will use an infra-red laser beam source based selective powder melting to fabricate copper alloy (CuCrZr) architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional CuCrZr alloy lattice architectures, under both quasi-static and dynamic loading…
Copper is widely used in micro- and nanoelectronics devices as interconnects and conductive layers due to good electric and mechanical properties. But especially the mechanical properties degrade significantly at elevated temperatures during operating conditions due to segregation of contamination elements to the grain boundaries where they cause…