Dey, P.; Yao, M.; Friák, M.; Hickel, T.; Raabe, D.; Neugebauer, J.: Ab-initio investigation of the role of kappa carbide in upgrading Fe–Mn–Al–C alloy to the class of advanced high-strength steels. ArcelorMittal Global R&D Gent, Thessaloniki, Greece (2017)
Kürnsteiner, P.; Wilms, M. B.; Weisheit, A.; Jägle, E. A.; Raabe, D.: In-process precipitation strengthening in Al–Sc during Laser Metal Deposition by exploiting the Intrinsic Heat Treatment. Alloys for Additive Manufacturing Symposium, Zürich, Switzerland (2017)
Rusitzka, A. K.; Stephenson, L.; Gremer, L.; Raabe, D.; Willbold, D.; Gault, B.: Getting insights to Alzheimer‘s disease by atom probe tomography. 6th International caesar conference, Overcoming Barriers — atomic-resolution and beyond: advances in molecular electron microscopy, Bonn, Germany (2017)
Konijnenberg, P. J.; An, D.; Stechmann, G.; Zaefferer, S.; Raabe, D.: Recent Developments in the Analysis of Microstructures by 3D-EBSD. Symposium: 3D materials characterization at all length scales and its applications to iron and steel, Düsseldorf, Germany (2017)
Peng, Z.; Gault, B.; Raabe, D.: On the Multiple Event Detection in Atom Probe Tomography. Microscopy & Microanalysis 2017 Conference, St. Louis, MO, USA (2017)
Li, Z.; Raabe, D.: Designing novel high-entropy alloys towards superior properties. Frontiers in Materials Processing Applications, Research and Technology (FiMPART'2017), Bordeaux, France (2017)
Low dimensional electronic systems, featuring charge density waves and collective excitations, are highly interesting from a fundamental point of view. These systems support novel types of interfaces, such as phase boundaries between metals and charge density waves.
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
In this project we conduct together with Dr. Sandlöbes at RWTH Aachen and the department of Prof. Neugebauer ab initio calculations for designing new Mg – Li alloys. Ab initio calculations can accurately predict basic structural, mechanical, and functional properties using only the atomic composition as a basis.
The wide tunability of the fundamental electronic bandgap by size control is a key attribute of semiconductor nanocrystals, enabling applications spanning from biomedical imaging to optoelectronic devices. At finite temperature, exciton-phonon interactions are shown to exhibit a strong impact on this fundamental property.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
In this project we study - together with the department of Prof. Neugebauer and Dr. Sandlöbes at RWTH Aachen - the underlying mechanisms that are responsible for the improved room-temperature ductility in Mg–Y alloys compared to pure Mg.
Enabling a ‘hydrogen economy’ requires developing fuel cells satisfying economic constraints, reasonable operating costs and long-term stability. The fuel cell is an electrochemical device that converts chemical energy into electricity by recombining water from H2 and O2, allowing to generate environmentally-friendly power for e.g. cars or houses…
The project Hydrogen Embrittlement Protection Coating (HEPCO) addresses the critical aspects of hydrogen permeation and embrittlement by developing novel strategies for coating and characterizing hydrogen permeation barrier layers for valves and pumps used for hydrogen storage and transport applications.