Mayrhofer, K. J. J.: Stability Investigations of Electrocatalysts for Electrochemical Energy Conversion. Seminar lecture at Helmholtz-Zentrum Berlin, Berlin, Germany (2014)
Rossrucker, L.; Schulz, J.; Krebs, S.; Mayrhofer, K. J. J.: A microelectrochemical flow cell coupled to ICP-MS for corrosion investigation of zinc alloys. Gordon Research Seminar on Corrosion – Aqueous, New London, NH, USA (2014)
Grote, J.-P.; Žeradjanin, A. R.; Cherevko, S.; Mayrhofer, K. J. J.: Electrochemical CO2 reduction: A Combinatorial High-Throughput Approach for Catalytic Activity, Stability, and Selectivity Investigations. 247th ACS National Meeting, Dallas, TX, USA (2014)
Mayrhofer, K. J. J.: Scanning Electrochemical Microscopy: Reading, Writing, Monitoring of Functional Interfaces. 65th Annual Meeting of the International Society of Electrochemistry, Symposium, Lausanne, Switzerland (2014)
Mayrhofer, K. J. J.: Basic Science and Key Technologies for Future Applications. Electrochemistry 2014, Johannes Gutentenberg-Universität Mainz, Mainz, Germany (2014)
Mayrhofer, K. J. J.: Combinatorial study of fundamental electrocatalyst performance of materials for oxygen evolution. Heraeus seminar "From Sunlight to Fuels - Novel Materials and Processes for Photovoltaic and (Photo)Catalytic Applications", Bad Honnef, Germany (2014)
Mayrhofer, K. J. J.: Oxygen electrochemistry as a cornerstone for sustainable energy conversion. International Symposium „Recent Achievements and Future Trends in Electrocatalysis“, Erlangen, Germany (2014)
Mayrhofer, K. J. J.: Stability of catalyst materials - the key for the deployment of electrochemical energy conversion. Seminar lecture at Gesellschaft Deutscher Chemiker, Mülheim/Ruhr, Germany (2014)
Mayrhofer, K. J. J.: Electrochemical Energy Conversion – The key for sustainable utilization of solar energy. Pregl Seminar lecture, National Institute of Chemistry, Ljubljana, Slovenia (2014)
Mayrhofer, K. J. J.: Kombinatorische elektrokatalytische CO2-Reduktion – ECCO2. BMBF Statuskonferenz „Technologien für Nachhaltigkeit und Klimaschutz – Chemische Prozesse und stoffliche Nutzung von CO2“, Königswinter, Germany (2014)
Mayrhofer, K. J. J.: Stability Investigations of Electrocatalysts for Electrochemical Energy Conversion. Annual Symposium of the KNCV Working Group on Electrochemistry, Leiden, The Netherlands (2013)
In this project, we investigate the phase transformation and twinning mechanisms in a typical interstitial high-entropy alloy (iHEA) via in-situ and interrupted in-situ tensile testing ...
Solitonic excitations with topological properties in charge density waves may be used as information carriers in novel types of information processing.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.
In this project we conduct together with Dr. Sandlöbes at RWTH Aachen and the department of Prof. Neugebauer ab initio calculations for designing new Mg – Li alloys. Ab initio calculations can accurately predict basic structural, mechanical, and functional properties using only the atomic composition as a basis.
Low dimensional electronic systems, featuring charge density waves and collective excitations, are highly interesting from a fundamental point of view. These systems support novel types of interfaces, such as phase boundaries between metals and charge density waves.
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
In this project we study - together with the department of Prof. Neugebauer and Dr. Sandlöbes at RWTH Aachen - the underlying mechanisms that are responsible for the improved room-temperature ductility in Mg–Y alloys compared to pure Mg.
The wide tunability of the fundamental electronic bandgap by size control is a key attribute of semiconductor nanocrystals, enabling applications spanning from biomedical imaging to optoelectronic devices. At finite temperature, exciton-phonon interactions are shown to exhibit a strong impact on this fundamental property.