Salgin, B.; Hamou, F. R.; Rohwerder, M.: Monitoring surface ion mobility on aluminum oxide: Effect of chemical pretreatments. Electrochimica Acta 110, pp. 526 - 533 (2013)
Özkanat, Ö.; Salgin, B.; Rohwerder, M.; Mol, J. M. C.; De Wit, H. J. H. W.; Terryn, H. A.: Erratum: Scanning Kelvin probe study of (oxyhydr)oxide surface of aluminum alloy (The Journal of Physical Chemistry C (2012) 116:2 (1805-1811) DOI: 10.1021/jp205585u). Journal of Physical Chemistry C 116 (10), p. 6505 - 6505 (2012)
Özkanat, Ö.; Salgin, B.; Rohwerder, M.; Mol, J. M. C.; Terryn, H. A.; De Wit, H. J. H. W.: A Combined Macroscopic Adhesion and Interfacial Bonding Study of Epoxy Coatings on Pretreated AA2024-T3. European Corrosion Congress (EUROCORR) 2010, Moscow, Russia, September 13, 2010 - September 17, 2010. Eurocorr2010, the European Corrosion Congress 3, pp. 2760 - 2768 (2010)
Salgin, B.; Rohwerder, M.: Ion Mobility Studies on Al2O3 Surfaces. 63rd Annual Meeting of the International Meeting of the International Society of Electrochemistry, Prague, Czech Republic (2012)
Salgin, B.; Rohwerder, M.: Mobility of water and charge carriers in polymer/oxide/aluminium alloy interphases. M2i-DPI Project Meeting at AkzoNobel, Sassenheim, The Netherlands (2012)
Salgin, B.; Rohwerder, M.: Mobility of Water and Charge Carriers in Polymer/Oxide/Aluminium Alloy Interphases. M2i/DPI Project Meeting, Düsseldorf, Germany (2012)
Salgin, B.; Rohwerder, M.: Mobility of Water and Charge Carriers in Polymer/Oxide/Aluminium Alloy Interphases. M2i/DPI Project Meeting, Eindhoven, The Netherlands (2011)
Salgin, B.; Rohwerder, M.: Mobility of Water and Charge Carriers in Polymer/Oxide/Aluminium Alloy Interphases. M2i Conference 2010, Noordwijkerhout, The Netherlands (2010)
Salgin, B.; Rohwerder, M.: Mobility of Water and Charge Carriers in Polymer/Oxide/Aluminium Alloy Interphases. M2i/DPI Project Meeting, Eindhoven, The Netherlands (2010)
Keil, P.; Salgin, B.; Vogel, D.; Rohwerder, M.: Applications of the Kelvin Probe: From ion mobilty to x-ray/sample interaction. Institute for X-Ray Physics, University of Göttingen, Göttingen, Germany (2010)
Salgin, B.; Rohwerder, M.: Mobility of Water and Charge Carriers in Polymer/Oxide/Aluminium Alloy Interphases. M2i Cluster6 (Durability) Meeting, Velsen-Noord, The Netherlands (2010)
In this project we study - together with the department of Prof. Neugebauer and Dr. Sandlöbes at RWTH Aachen - the underlying mechanisms that are responsible for the improved room-temperature ductility in Mg–Y alloys compared to pure Mg.
The wide tunability of the fundamental electronic bandgap by size control is a key attribute of semiconductor nanocrystals, enabling applications spanning from biomedical imaging to optoelectronic devices. At finite temperature, exciton-phonon interactions are shown to exhibit a strong impact on this fundamental property.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
Efficient harvesting of sunlight and (photo-)electrochemical conversion into solar fuels is an emerging energy technology with enormous promise. Such emerging technologies depend critically on materials systems, in which the integration of dissimilar components and the internal interfaces that arise between them determine the functionality.
Enabling a ‘hydrogen economy’ requires developing fuel cells satisfying economic constraints, reasonable operating costs and long-term stability. The fuel cell is an electrochemical device that converts chemical energy into electricity by recombining water from H2 and O2, allowing to generate environmentally-friendly power for e.g. cars or houses…
The project Hydrogen Embrittlement Protection Coating (HEPCO) addresses the critical aspects of hydrogen permeation and embrittlement by developing novel strategies for coating and characterizing hydrogen permeation barrier layers for valves and pumps used for hydrogen storage and transport applications.
We have studied a nanocrystalline AlCrCuFeNiZn high-entropy alloy synthesized by ball milling followed by hot compaction at 600°C for 15 min at 650 MPa. X-ray diffraction reveals that the mechanically alloyed powder consists of a solid-solution body-centered cubic (bcc) matrix containing 12 vol.% face-centered cubic (fcc) phase. After hot compaction, it consists of 60 vol.% bcc and 40 vol.% fcc. Composition analysis by atom probe tomography shows that the material is not a homogeneous fcc–bcc solid solution