Dong, X.; Wei, S.; Tehranchi, A.; Saksena, A.; Ponge, D.; Sun, B.; Raabe, D.: The dual role of boron on hydrogen embrittlement: example of interface-related hydrogen effects in an austenite-ferrite two-phase lightweight steel. Acta Materialia 299, 121458 (2025)
Büyükuslu, Ö.; Yang, F.; Raabe, D.; To Baben, M.; Ravensburg, A.: Using Thermodynamics and Microstructure to Mitigate Overfitting in Pellet Reduction Models. steel research international, 2500263 (2025)
Pauna, H.; Souza Filho, I. R.; Kulse, M.; Jovičević-Klug, M.; Springer, H.; Huttula, M.; Fabritius, T.; Raabe, D.: In Situ Observation of Sustainable Hematite-Magnetite-Wustite-Iron Hydrogen Plasma Reduction. Metallurgical and Materials Transactions B 56 (4), pp. 3938 - 3949 (2025)
Ratzker, B.; Ruffino, M.; Shankar, S.; Raabe, D.; Ma, Y.: Elucidating the microstructure evolution during hydrogen-based direct reduction via a case study of single crystal hematite. Acta Materialia 294, 121174 (2025)
If manganese nodules can be mined in an environmentally friendly way, the critical metals needed for the energy transition could be produced with low CO2 emissions
Scientists at the Max Planck Institute for Sustainable Materials have developed a carbon-free, energy-saving method to extract nickel for batteries, magnets and stainless steel.
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.