Raabe, D.; Roters, F.; Zhao, Z.: Texture component crystal plasticity finite element method for physically-based metal forming simulations including texture update. Proc. 8th Int. Conf. on Aluminium Alloys, pp. 31 - 36 (2002)
Raabe, D.; Zhao, Z.; Mao, W.: On the dependence of in-grain subdivision and deformation texture of aluminium on grain interaction. Acta Materialia 50, pp. 4379 - 4394 (2002)
Sachtleber, M.; Zhao, Z.; Raabe, D.: Experimental investigation of plastic grain interaction. Materials Science and Engineering A 336, pp. 81 - 87 (2002)
Juntunen, P.; Raabe, D.; Karjalainen, P.; Kopio, T.; Bolle, G.: Optimizing continuous annealing of IF steels for improving their deep drawability. Metallurgical and Materials Transactions A 32, pp. 1989 - 1995 (2001)
Roters, F.; Raabe, D.; Gottstein, G.: Work hardening in heterogeneous alloys - A microstructural approach based on three internal state variables. Acta Materialia 48 (17), pp. 4181 - 4189 (2000)
Raabe, D.; Becker, R. C.: Coupling of a crystal plasticity finite element model with a probabilistic cellular automaton for simulating primary static recrystallization in aluminum. Modelling and Simulation in Materials Science and Engineering 8, pp. 445 - 462 (2000)
Raabe, D.; Miyake, K.; Takahara, H.: Processing, microstructure, and properties of ternary high-strength Cu–Cr–Ag in situ composites. Material Science and Engineering A 291, pp. 186 - 197 (2000)
Raabe, D.; Mattissen, D.: Experimental investigation and Ginzburg-Landau modeling of the microstructure dependence of superconductivity in Cu–Ag–Nb wires. Acta Materialia 47 (3), pp. 769 - 777 (1999)
Mattissen, D.; Raabe, D.; Heringhaus, F.: Experimental investigation and modeling of the influence of microstructure on the resistive conductivity of a Cu–Ag–Nb in situ composite. Acta Materialia 47, pp. 1627 - 1634 (1999)
Marx, V.; Raabe, D.; Engler, O.; Gottstein, G.: Simulation of the texture evolution during annealing of cold rolled BCC and FCC matals using a cellular automation approach. Textures and Microstructures 28, pp. 211 - 218 (1997)
Raabe, D.: Texture simulation for hot rolling of aluminium by use of a Taylor model considering grain interactions. Acta Metallurgica et Materialia 43 (3), pp. 1023 - 1028 (1995)
The aim of the current study is to investigate electrochemical corrosion mechanisms by examining the metal-liquid nanointerfaces. To achieve this, corrosive fluids will be strategically trapped within metal structures using novel additive micro fabrication techniques. Subsequently, the nanointerfaces will be analyzed using cryo-atom probe…
In this project we pursue recent developments in the field of austenitic steels with up to 18% reduced mass density. The alloys are based on the Fe-Mn-Al-C system.
Magnetic properties of magnetocaloric materials is of utmost importance for their functional applications. In this project, we study the magnetic properties of different materials with the final goal to discover new magnetocaloric materials more suited for practical applications.
In this project, we work on the use of a combinatorial experimental approach to design advanced multicomponent multi-functional alloys with rapid alloy prototyping. We use rapid alloy prototyping to investigate five multicomponent Invar alloys with 5 at.% addition of Al, Cr, Cu, Mn and Si to a super Invar alloy (Fe63Ni32Co5; at.%), respectively…
The aim of the Additive micromanufacturing (AMMicro) project is to fabricate advanced multimaterial/multiphase MEMS devices with superior impact-resistance and self-damage sensing mechanisms.
In this project we study a new strategy for the theory-guided bottom up design of beta-Ti alloys for biomedical applications using a quantum mechanical approach in conjunction with experiments. Parameter-free density functional theory calculations are used to provide theoretical guidance in selecting and optimizing Ti-based alloys...
Local lattice distortion is one of the core effects in complex concentrated alloys (CCAs). It has been expected that the strength CCAs can be improved by inducing larger local lattice distortions. In collaboration with experimentalists, we demonstrated that VCoNi has larger local lattice distortions and indeed has much better strength than the…
Laser Powder Bed Fusion (LPBF) is the most commonly used Additive Manufacturing processes. One of its biggest advantages it offers is to exploit its inherent specific process characteristics, namely the decoupling the solidification rate from the parts´volume, for novel materials with superior physical and mechanical properties. One prominet…