Jägle, E. A.: Impact of the process gas atmosphere in Laser Additive Manufacturing – desired and undesired effects. Alloys for Additive Manufacturing Symposium 2018, Sheffield, UK (2018)
Kürnsteiner, P.; Wilms, M. B.; Weisheit, A.; Jägle, E. A.; Raabe, D.: Preventing the Coarsening of Al3Sc Precipitates by the Formation of a Zr-rich Shell During Laser Metal Deposition. TMS2018 Annual Meeting & Exhibition, Phoenix, AZ, USA (2018)
Jägle, E. A.: Ex-situ and in-situ heat treatment of alloys during Laser Additive Manufacturing. AWT Kolloquium, Institut für Werkstofftechnik, Bremen, Germany (2017)
Jägle, E. A.: Additive Manufacturing and 3D Printing - What’s beyond the hype? Institute Lecture at Indian Institute of Technology Roorkee, Roorkee, India (2017)
Jägle, E. A.: Alloys for Additive Manufacturing, Alloys by Additive Manufacturing. Plenary presentation, Advances in Materials & Processing: Challenges and Opportunities, Indian Institute of Technology Roorkee, Roorkee, India (2017)
Jägle, E. A.: Exploiting the Intrinsic Heat Treatment during Laser Additive Manufacturing to trigger Precipitation Reactions. International Mechanical Engineering Congress & Exposition (IMECE), Tampa, FL, USA (2017)
Kürnsteiner, P.; Wilms, M. B.; Weisheit, A.; Jägle, E. A.; Raabe, D.: In-process precipitation strengthening in Al–Sc during Laser Metal Deposition by exploiting the Intrinsic Heat Treatment. Alloys for Additive Manufacturing Symposium, Zürich, Switzerland (2017)
Jägle, E. A.: Alloys for Additive Manufacturing, Alloys by Additive Manufacturing. Seminar talk at Culham Center for Fusion Energy, Oxford, Oxford, UK (2017)
Jägle, E. A.: Alloys for Additive Manufacturing, Alloys by Additive Manufacturing. Laser-Kolloquium at Fraunhofer Institut für Lasertechnik, Aachen, Aachen, Germany (2017)
Jägle, E. A.: Alloys for Additive Manufacturing, Alloys by Additive Manufacturing. Seminar talk at Institut für Umformtechnik und Leichtbau, TU Dortmund, Dortmund, Germany (2017)
Jägle, E. A.: Metallische Werkstoffe in der Additiven Fertigung. Workshop "Steels for Additive Manufacturing", Stahlinstitut,VDEh, Düsseldorf, Düsseldorf, Germany (2017)
Scientists at the Max Planck Institute for Sustainable Materials have developed a carbon-free, energy-saving method to extract nickel for batteries, magnets and stainless steel.
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.