Yin, Y.; Zhao, H.; Prabhakar, J. M.; Rohwerder, M.: Organic composite coatings containing mesoporous silica particles: Degradation of the SiO2 leading to self-healing of the delaminated interface. Corrosion Science 200, 110252 (2022)
Springer, H.; Baron, C.; Tanure, L.; Rohwerder, M.: A combinatorial study of the effect of Al and Cr additions on the mechanical, physical and corrosion properties of Fe. Materials Today Communications 29, 102947 (2021)
Yin, Y.; Schulz, M.; Rohwerder, M.: Optimizing smart self-healing coatings: Investigating the transport of active agents from the coating towards the defect. Corrosion Science 190, 109661 (2021)
Zhong, X.; Schulz, M.; Wu, C.-H.; Rabe, M.; Erbe, A.; Rohwerder, M.: Limiting Current Density of Oxygen Reduction under Ultrathin Electrolyte Layers: From the Micrometer Range to Monolayers. ChemElectroChem 8 (4), pp. 712 - 718 (2021)
Friedrichs, M.; Peng, Z.; Grunwald, T.; Rohwerder, M.; Gault, B.; Bergs, T.: PtIr protective coating system for precision glass molding tools: Design, evaluation and mechanism of degradation. Surface and Coatings Technology 385, 125378 (2020)
Sun, B.; Krieger, W.; Rohwerder, M.; Ponge, D.; Raabe, D.: Dependence of hydrogen embrittlement mechanisms on microstructure-driven hydrogen distribution in medium Mn steels. Acta Materialia 183, pp. 313 - 328 (2020)
Scientists at the Max Planck Institute for Sustainable Materials have developed a carbon-free, energy-saving method to extract nickel for batteries, magnets and stainless steel.
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.