Jägle, E. A.: Impact of the process gas atmosphere in Laser Additive Manufacturing – desired and undesired effects. Alloys for Additive Manufacturing Symposium 2018, Sheffield, UK (2018)
Kürnsteiner, P.; Wilms, M. B.; Weisheit, A.; Jägle, E. A.; Raabe, D.: Preventing the Coarsening of Al3Sc Precipitates by the Formation of a Zr-rich Shell During Laser Metal Deposition. TMS2018 Annual Meeting & Exhibition, Phoenix, AZ, USA (2018)
Jägle, E. A.: Ex-situ and in-situ heat treatment of alloys during Laser Additive Manufacturing. AWT Kolloquium, Institut für Werkstofftechnik, Bremen, Germany (2017)
Jägle, E. A.: Additive Manufacturing and 3D Printing - What’s beyond the hype? Institute Lecture at Indian Institute of Technology Roorkee, Roorkee, India (2017)
Jägle, E. A.: Alloys for Additive Manufacturing, Alloys by Additive Manufacturing. Plenary presentation, Advances in Materials & Processing: Challenges and Opportunities, Indian Institute of Technology Roorkee, Roorkee, India (2017)
Jägle, E. A.: Exploiting the Intrinsic Heat Treatment during Laser Additive Manufacturing to trigger Precipitation Reactions. International Mechanical Engineering Congress & Exposition (IMECE), Tampa, FL, USA (2017)
Kürnsteiner, P.; Wilms, M. B.; Weisheit, A.; Jägle, E. A.; Raabe, D.: In-process precipitation strengthening in Al–Sc during Laser Metal Deposition by exploiting the Intrinsic Heat Treatment. Alloys for Additive Manufacturing Symposium, Zürich, Switzerland (2017)
Jägle, E. A.: Alloys for Additive Manufacturing, Alloys by Additive Manufacturing. Seminar talk at Culham Center for Fusion Energy, Oxford, Oxford, UK (2017)
Jägle, E. A.: Alloys for Additive Manufacturing, Alloys by Additive Manufacturing. Laser-Kolloquium at Fraunhofer Institut für Lasertechnik, Aachen, Aachen, Germany (2017)
Jägle, E. A.: Alloys for Additive Manufacturing, Alloys by Additive Manufacturing. Seminar talk at Institut für Umformtechnik und Leichtbau, TU Dortmund, Dortmund, Germany (2017)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The key to the design and construction of advanced materials with tailored mechanical properties is nano- and micro-scale plasticity. Significant influence also exists in shaping the mechanical behavior of materials on small length scales.
The structure of grain boundaries (GBs) is dependent on the crystallographic structure of the material, orientation of the neighbouring grains, composition of material and temperature. The abovementioned conditions set a specific structure of the GB which dictates several properties of the materials, e.g. mechanical behaviour, diffusion, and…
This project endeavours to offer comprehensive insights into GB phases and their mechanical responses within both pure Ni and Ni-X (X=Cu, Au, Nb) solid solutions. The outcomes of this research will contribute to the development of mechanism-property diagrams, guiding material design and optimization strategies for various applications.
By using the DAMASK simulation package we developed a new approach to predict the evolution of anisotropic yield functions by coupling large scale forming simulations directly with crystal plasticity-spectral based virtual experiments, realizing a multi-scale model for metal forming.