Bastos, A.; Zaefferer, S.; Raabe, D.: Characterization of nanostructured electrodeposited NiCo Samples by use of Electron Backscatter Diffraction (EBSD). MRS Spring Meeting, San Francisco, CA, USA (2005)
Zaefferer, S.: Investigation of the Bainitic Phase Transformation in a Low Alloyed TRIP steel using EBSD and TEM. Material Science and Technology 2004, New Orleans, LA, USA (2004)
Zaefferer, S.; Ohlert, J.; Bleck, W.: Influence of thermal treatment on the microstructure and mechanical properties of a low alloyed TRIP steel. Werkstoffwoche 2004, München, Germany (2004)
Konrad, J.; Raabe, D.; Zaefferer, S.: Investigation of Nucleation Mechanisms of Recrystallization in Warm Rolled Fe3Al Base Alloys. 2nd International Conference on Recrystallization and Grain Growth, Annecy, France (2004)
Zaefferer, S.: High Resolution EBSD Investigations of the Recrystallization Behaviour of a cold rolled Ni3Al single crystal. 2nd International Joint Conference on Recrystallization and Grain Growth, Annecy, France (2004)
Dorner, D.; Lahn, L.; Zaefferer, S.: Investigation of the primary recrystallisation microstructure of cold rolled and annealed Fe3%Si single crystals with Goss orientation. 2nd Joint International Conference on Recrystallization and Grain Growth (Rex&GG2), Annecy, France (2004)
Dorner, D.; Zaefferer, S.: Microstructure and texture of shear bands in cold rolled silicon steel single crystals of Goss orientation. 2nd International Conference on Texture and Anisotropy of Polycrystals (ITAP2), Metz, France (2004)
Zaefferer, S.: Electron backscatter diffraction (EBSD): A powerful tool to understand microstructures. Institutskolloquium im Fachbereich Material-und Geowissenschaften der TU Darmstadt, TU Darmstadt, Germany (2004)
Zaefferer, S.: Microtexture measurements: A powerful tool to understand microstructures. Institusseminar am Institut für metallische Werkstoffe, Ruhr-Universität Bochum, Germany (2004)
Zaefferer, S.; Chen, N.; Dorner, D.: New ideas and investigations concerning the development of the Goss texture. Treffen des Fachausschusses Texturen, Institut für Physik, TU Dresden, Germany (2004)
Zaefferer, S.: The investigation of the correlation between texture and microstructure on a submicrometer scale in the TEM. Seminar des Instituts für Geologie, ETH Zürich, Schweiz (2004)
Konrad, J.; Raabe, D.; Zaefferer, S.: Texturentwicklung beim Warmwalzen und bei der Rekristallisation von Fe3Al-Basislegierungen. Sitzung des DFG Fachausschuss Intermetallische Phasen, MPIE, Düsseldorf, Germany (2004)
Konrad, J.; Zaefferer, S.; Schneider, A.; Raabe, D.; Frommeyer, G.: Texturentwicklung beim Warmwalzen und bei der Rekristallisation von Fe3Al-Basislegierungen. Treffen des Fachausschusses Intermetallische Phasen, MPI Eisenforschung, Düsseldorf (2004)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
The Ni- and Co-based γ/γ’ superalloys are famous for their excellent high-temperature mechanical properties that result from their fine-scaled coherent microstructure of L12-ordered precipitates (γ’ phase) in an fcc solid solution matrix (γ phase). The only binary Co-based system showing this special type of microstructure is the Co-Ti system…
In this project, we employ atomistic computer simulations to study grain boundaries. Primarily, molecular dynamics simulations are used to explore their energetics and mobility in Cu- and Al-based systems in close collaboration with experimental works in the GB-CORRELATE project.
This project is a joint project of the De Magnete group and the Atom Probe Tomography group, and was initiated by MPIE’s participation in the CRC TR 270 HOMMAGE. We also benefit from additional collaborations with the “Machine-learning based data extraction from APT” project and the Defect Chemistry and Spectroscopy group.