Godara, A.; Raabe, D.; Green, S.: The influence of sterilization processes on the micromechanical properties of carbon fiber reinforced PEEK composites for bone-implant applications. 2006 MRS Fall Conference, Boston, MA, USA (2006)
Ohsaki, S.; Raabe, D.; Hono, K.: On the Mechanism of Mechanical Mixing and Deformation-induced Amorphization in Heavily Drawn Cu-Nb-Ag in situ Composite Wires. MRS Fall Conference, Boston, MA, USA (2006)
Raabe, D.; Sander, B.; Friák, M.; Neugebauer, J.: Bottom up design of novel Titanium-based biomaterials through the combination of ab-initio simulations and experimental methods. Materials Research Society fall meeting, Boston, MA, USA (2006)
Sandim, M.; Stamopoulos, D.; Sandim, H.; Ghivelder, L.; Thilly, L.; Vidal, V.; Lecouturier, F.; Raabe, D.: Strain Effects on the Magnetic Properties of Cu-Nb Nanofilamentary Composites. MRS Fall Conference, Boston, MA, USA (2006)
Bieler, T. R.; Crimp, M. A.; Roters, F.; Raabe, D.: Computational modeling of TiAl microstructures which developed microcracked grain boundaries. Institut für Metallkunde und Metallphysik RWTH-Aachen, Aachen, Germany (2006)
Bieler, T. R.; Crimp, M. A.; Roters, F.; Raabe, D.: Computational modeling of grain boundary microcrack nucleation using a slip interaction based definition of boundary character. Risø National Laboratories, Roskilde, Denmark (2006)
Nikolov, S.; Raabe, D.; Roters, F.: A Constitutive Model for Glassy Polymers with Shear Transformation Zones Plasticity and Reptation-Based Viscoelasticity. MMM Third International Conference Multiscale Materials Modeling, Freiburg, Germany (2006)
Zaafarani, N.; Roters, F.; Raabe, D.: A Study of Deformation and texture Evolution during Nanoindentation in a Cu Single Crystal using Phenomenological and Physically-Based Crystal Plasticity FE Models. MMM Third International Conference Multiscale Materials Modeling, Freiburg, Germany (2006)
Kobayashi, S.; Zaefferer, S.; Raabe, D.: Relative Importance of Nucleation vs. Growth for Recrystallisation of Particle-containing Fe3Al Alloys. Fundamentals of Deformation and Annealing Symposium, Manchester, UK (2006)
Zaafarani, N.; Roters, F.; Raabe, D.: Recent Progress in the 3D Experimentation and Simulation of Nanoindents. Symposium Fundamentals of Deformation and Annealing, Manchester, UK (2006)
Bieler, T. R.; Crimp, M. A.; Ma, A.; Roters, F.; Raabe, D.: A Slip Interaction Based Measure of Damage Nucleation in Grain Boundaries. 3rd International Conference on Multiscale Materials Modeling, Freiburg, Germany (2006)
Raabe, D.: Neues aus der Eisenzeit - Simulationen und Experimente in der Kristallmechanik und frischer Hummer. Kolloquium an der Bundesantalt für Materialforschung (BAM), Berlin, Germany (2006)
Prymak, O.; Stein, F.; Palm, M.; Frommeyer, G.; Raabe, D.: Konstitutionsuntersuchungen im System Nb-Cr-Al: Erste Ergebnisse und weitere Planungen. Workshop: The Nature of Laves Phases VII, MPI für Metallforschung Stuttgart, Germany (2006)
Zambaldi, C.; Roters, F.; Raabe, D.: Spherical indentation modeling for the investigation of primary recrystallization in a single-crystal nickel-base superalloy. Plasticity, Halifax, Canada (2006)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
This project with the acronym GB-CORRELATE is supported by an Advanced Grant for Gerhard Dehm by the European Research Council (ERC) and started in August 2018. The project GB-CORRELATE explores the presence and consequences of grain boundary phase transitions (often termed “complexions” in literature) in pure and alloyed Cu and Al. If grain size…
Hydrogen embrittlement remains a strong obstacle to the durability of high-strength structural materials, compromising their performance and longevity in critical engineering applications. Of particular relevance is the effect of mobile and trapped hydrogen at interfaces, such as grain and phase boundaries, since they often determine the material’s…